深度学习的一些名词

1.batch_size与epoch

batch_size 表示每次处理的样本的数目,loss=loss(x1)+loss(x2)+…loss(x_batch_size)=f(w1)+f(w2)+…f(w_n)
f(w)表示从众多loss中提取的w_m的分量之和,其实不这么写也没关系,不过是求偏导的时候变成求众loss对某w的偏导之和

epoch_num: 表示要训练几轮,每一轮所有的样本都会参加,分数次进行,每一次选batch_size个样本来训练模型并进行一次模型的权重更新

2.图像输入与卷积层各维度对应的意义

图像
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
卷积核:(n,d,w,h),可以认为是n表示多少个(输出)通道,d表示每个通道的深度,w与h表示长宽
图像:(n,c,w,h),n表示批量数,c表示每个批量的深度(灰度图为1.rgb图为3),w与h表示长宽

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值