MICCAI Grand Challenge:Prostate MR Image Segmentation 2012
本次挑战题目:分割前列腺包膜
Prostate Segmentation
这篇文章主要是介绍数据集和分割算法的评价指标。
一、Introduction
由于MRI在prostate cancer的临床诊断和治疗上得到了广泛的应用,Prostate MRI图像分割已经成为一个激烈的研究领域。分割对放疗中的精确定位前列腺边界、估计体积以跟踪病情进展、初始化多模态配准算法、获得前列腺癌计算机辅助检测的感兴趣区域等均有很大用处。
然而大多数算法是在专有数据集上进行评估的,且在MRI中信号强度未进行标准化,图像外观很大程度上是由采集协议、场强、线圈轮廓和扫描仪类型决定的,因此对不同前列腺分割算法性能的比较存在很大的困难,阻碍了前列腺分割算法的进一步发展和改进。
二、Datesets
1.MR images:数据来自四个不同中心: Haukeland University Hospital (HK) in Norway, the Beth Israel Deaconess Medical Center (BIDMC)
in the US,University College London (UCL) in the United Kingdom and the Radboud University Nijmegen Medical Centre (RUNMC) in the Netherlands,每个中心提供25张横向T2-weighted MR图像,总共得到了100张MR图像。在本次挑战中将数据随机分成50个训练案例,30个测试案例和20个现场测试案例。///虽然选择过程是随机的,但根据不同的中心进行分层,以确保不会发生对某一个中心的训练偏见。///
2.Reference standard segmentation:每个中心提供一个由专家实现的前列腺包膜的参考分割,所有案例的注释均是使用contouring tool在一片一片的基础上执行的,不同机构使用的contouring tool是不同的,但画轮廓的方式是相似的。这些参考分割由另一个专家检查,以保证它们的一致性。
3.测试和现场测试数据由一个相对缺乏经验的非临床观察者使用contouring tool手动分割,该观察者对参考标准是不知情的以确保分割是独立的。该观察者的分割用于将评价指标转换为案例评分。
Prostate12数据集中图像以raw+mhd格式呈现,每个病人的数据包含一个mhd文件和一个同名的raw文件。mhd存储了数据头部信息,从mhd中可以读取数据大小、切片大小、像素大小等信息,raw存储了像素信息。
三、 Evaluation
评价指标
同时选择边界和体积度量以更完整地观察分割精度
1.Dice coefficient骰子系数
Dics系数是一种集合相似度度量指标,通常用于计算两个样本的相似度,值得范围0-1,值越大表示分割效果越好。
2.绝对相对体积差aRVD
相对体积差:
绝对相对体积差:用aRVD衡量算法的性能。
3.平均边界距离ABD(边界点之间最短距离的平均值)
Xs和Ys分别是参考分割和算法分割表面点的集合,算子d是Euclidean distance欧式距离操作。
计算平均边界距离需要首先提取参考分割和算法分割的表面。
4.95%Hausdorff distance95HD对分割的边界比较敏感
计算95%Hausdorff distance也需要首先提取参考分割和算法分割的表面。
正则的Hausdorff distance的定义:
由于正常的Hausdorff distance对异常值非常敏感,因此使用95% asymmetric Hausdorff distances,即最后的值乘以95%,目的是为了消除离群的一个非常小的子集的影响。