概率论速查手册(2)——一维随机变量及其分布

1 基本概念

1.1 随机变量\(X\)与分布函数\(F(X)\)

随机变量

定义在\(\Omega={\omega}\)上,取值在实数轴上的变量(这里只讨论实数域内,但随机变量可以取到复数)

$$X=X(\omega), \omega\in\Omega$$

分布函数

$$F(x)\triangleq{P}{X\leqslant{x}}, -\infty<x<+\infty$$

1.2 离散型随机变量

定义:\(X\)取有限个或无穷可列个值

分布律:$$X\thicksim\begin{bmatrix}x_1&x_2&…&x_n&…\\p_1&p_2&…&p_n&…\end{bmatrix}$$

分布函数:阶梯型函数,左闭右开,\(F(-\infty)=0, F(+\infty)=1\)

$$F(x)\triangleq{P}{X\leqslant{x}}, -\infty<x<+\infty$$

1.3 连续型随机变量

定义:若存在非负可积函数\(f(x)\),使得\(\forall{x}\in(-\infty,+\infty)\),有

$$F(X)=\int_{-\infty}^{x}f(t)dt$$

则称\(X\)为连续型随机变量,\(f(x)\)叫作\(X\)的概率密度

连续型随机变量无集中概率,任何一点概率为0,分布函数连续

1.4 分布函数、概率及概率密度的性质

分布函数性质:

1.单调不减

2.\(F(-\infty)=0, F(+\infty)=1\)

3.右连续

离散型随机变量分布律\({p_i}\)的性质:

1.\(p_i\geqslant{0}\)

2.\(\sum_ip_i=1\)

连续型随机变量概率密度函数\(f(x)\)的性质:

1.\(f(x)\geqslant{0}\)

2.\(\int_{-\infty}^{+\infty}f(x)dx=1\)

 

2 八个分布

2.1 0-1分布-伯努利一次试验

$$X\thicksim\begin{bmatrix}1&0\\p&1-p\end{bmatrix}$$

非黑即白的试验,\(X\)称为伯努利计数度量

2.2 二项分布-伯努利\(N\)次试验

条件:

1.每次试验独立

2.每次试验\(A\)发生的概率为\(p,P(A)=p\)

3.非黑即白的试验,只有\(A,A_bar\)发生

记\(X\)为\(A\)发生的次数,则:

$$P(X=k)=C_n^kp^k(1-p)^{n-k},k=0,1,2,…,n$$

$$X\thicksim{B(n,p)}$$

2.3 几何分布-无穷多次伯努利试验,首中即停止试验

记\(X\)为试验的次数,则:

$$P(X=k)=p(1-p)^{k-1},k=1,2,…$$

第\(k\)次概率为\(p\),前\(k-1\)次概率为\(1-p\)

$$X\thicksim{Ge(p)}$$

几何分布和几何没什么关系

2.4 超几何分布

\(N\)件产品,\(M\)件正品,无放回取\(n\)次,则取到\(k\)个正品的概率:

$$P(X=k)={{C_M^kC_{N-M}^{n-k}}\over{C_N^n}},k=0,1,2,…,n$$

$$X\thicksim{H(N,M,n)}$$

超几何分布和几何没什么关系

2.5 泊松分布

某时间段,某场合下源源不断地质点来流地个数

如:某景区黄金周游客人数

$$P(X=k)={{\lambda^k}\over{k!}}e^{-\lambda},k=0,1,2,…$$

$$\lambda:强度, EX=\lambda (期望)$$

$$X\thicksim{P(\lambda)}$$

2.6 均匀分布-“几何概型”

$$X\thicksim{f}(x)=\left\{ \begin{aligned}&{1\over{b-a}}&,a\leqslant{x}\leqslant{b}\\&0&,others\end{aligned} \right. $$

$$X\thicksim{U(a,b)}或U[a,b]$$

\(X\)在\(I\)上的任一子区间取值地概率与该子区间地长度成正比,这个是均匀分布

2.7 指数分布

零件寿命

$$X\thicksim{f}(x)=\left\{ \begin{aligned}&\lambda e^{-\lambda x}&,x>0\\&0&,x\leqslant0\end{aligned} \right. $$

$$\lambda:失效率, EX={1\over\lambda} (期望)$$

$$X\thicksim{E(\lambda)},\lambda>0$$

2.8 正态分布(高斯分布)

$$X\thicksim{f}(x)={1\over{\sqrt{2\pi}\sigma}}e^{-{{(x-\mu)^2}\over{2\sigma^2}}}$$

$$X\thicksim{N(\mu,\sigma^2)}$$

标准正态分布

$$X\thicksim{N(0,1)}$$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值