数字图像处理——第七章(小波变换和多分辨率处理)


所谓的小波的小是针对傅里叶波而言,傅里叶波指的是在时域空间无穷震荡的正弦(或余弦波)。
“小波”(wavelet)是一种“尺度”很小的波动,并具有时间和频率特性。
小波函数必须满足以下两个条件:
(1)小波必须是振荡的;
(2)小波是能量在时域非常集中的波,它的能量有限,都集中在某一点附近,即振幅只能在一个很短的一段区间上非0,即是局部化的,且积分的值为零。如下图所示
在这里插入图片描述
可参考: 通俗易懂讲解小波变换

傅里叶变换和小波变换的区别:
■傅里叶变换:基础函数是正弦(或余弦)函数。反映的是图像的整体特征, 其频域分析具有很好的局部性,但空间(时间)域上没有局部化功能。傅立叶变换是将信号完全的放在频率域中分析,但无法给出信号在每一个时间点的变化情况,并且对时间轴上任何点的突变都会影响整个频率的信号。
■小波变换:基函数是小波,具有变化的频率和有限的持续时间。是空间(时间)和频率的局部变换,它通过伸缩平移运算对信号逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节。是多分辨率理论的分析基础。
多分辨率理论:将多种学科的技术有效地统一在一起,其优势很明显,某种分辨率下所无法发现的特性在另一种分辨率下将很容易被发现。
在这里插入图片描述
小波的性质

  • 可分离性、尺度可变性、平移性
  • 多分辨率的一致性
  • 正交性

一、基础

图像通常是由相似纹理和灰度级连成的区域,它们相结合就形成了物体。

  • 若物体的尺寸较小或对比度较低,通常以较高的分辨率进行研究
  • 若物体的尺寸较大或对比度较高,粗略的观察就已足够
  • 若较大物体和较小物体同时存在时,以不同的分辨率来研究它们将更具优势,即多分辨率分析。

以下将介绍与多分辨率分析相关的三种图像处理技术。

1.1 图像金字塔

是以多分辨率来表示图像的一种结构,结构非常有效,且概念简单。是一系列以金字塔形状排列的、分辨率逐步降低的图像集合。
金字塔底部是待处理图像的高分辨率表示,顶部则包含低分辨率的近似。向金字塔上层移动时,尺寸和分辨率逐步降低。
在这里插入图片描述
基础级:大小为2J x 2J 或 N x N
顶点级:大小为1x1(单个像素)
第j级大小为2j x 2j ,0 <= j <= J。
但通常金字塔会截短到P+1级,即将级别限制到P来降低原图像的分辨率近似,也就是说不会到金字塔靠近顶端的位置。

第j-1级近似输出用来建立近似值金字塔;作为金字塔基级的原始图像和它的P级减少的分辨率近似都能直接获取并调整;
第j级的预测残差输出用于建立预测残差金字塔;近似值和预测残差金字塔都通过迭代计算获得。迭代算法如下:
1、初始化,原始图象大小,j=J
2、j-1级,以2为步长进行子抽样,计算输入图像减少的分辨率近似值—j-1级近似值,生成子抽样金字塔。
3、对j-1 级近似值进行步长为2的内插,并进行过滤,生成与输入图像等分辨率的预测图像。
4、输入图像和预测图像之间的差异,产生预测残差金字塔。
5、重复2、3、4步骤。
在这里插入图片描述
金字塔低分辨率级别用于分析较大的结构或图像的整体内容;高分辨率图像适合于分析单个物体的特性。

1.2 子带编码

一幅图像被分解为一组频带受限的分量,称为子带。
■ 子带可以重组在一起无失真地重建原始图象
■ 每个子带通过对输入进行带通滤波而得到
■ 子带带宽小于原始图像带宽,子带可以进行无信息损失的抽样
■ 原始图象的重建可以通过内插、滤波、和叠加单个子带来完成
在这里插入图片描述
该系统由两组滤波器组构成,h0(n)和h1(n)是半波段滤波器,它们的理想传递特性为H0和H1,用于将输入序列分成两个半长序列flp(n)和fhp(n),表示输入的子带。

分析滤波器组即为分解,综合滤波器组即为重构

对图像处理来说:分解就是通过下采样提取图像的低频(近似)和高频(细节)信息。每一层(尺度)的分解都是对上一层分解中的低频信息进行再分解。重构是通过上采样将分解的低频和高频信息再合并为分解前的图像的近似。

h0(n)为低通滤波器,其输出flp(n)称为f(n)的近似;h1(n)为高通滤波器,其输出flp(n)称为高频部分或细节部分
综合滤波器g0(n)和g1(n)将flp(n)和fhp(n)合并。
子带编码的目的:选择h0(n)、h1(n)、g0(n)、g1(n),以便使子带编码和解码系统的输入和输出是相同的,完成这一任务时,可以说最终系统采用了完美重建滤波器

一维滤波器用于图像处理的二维可分离滤波器。首先用于一个维度( 如垂直方向),再应用于另一个维度(如水平方向),两个阶段都执行下采样(其中一次是在第二个滤波操作之前执行的)。
在这里插入图片描述
2↓表示以2为基进行下采样。输出的a(m,n),dV(m,n),dH(m,n),dD(m,n)分别称为输入图像的近似子带、垂直细节子带、水平字节子带和对角线细节子带。这些子带可分为4个更小的子带,更小的子带还可再分。[a为approximation的首字母,d为detail的首字母]

使用上图所示的编码系统对花瓶进行4子带分离。
在这里插入图片描述

1.3 哈尔变换(Haar)

哈尔变换的基函数是已知的最古老、也是最简单的正交小波。
哈尔变换可用如下矩阵形式表示:
在这里插入图片描述
F是一个N x N图像矩阵,H是一个N x N哈尔变换矩阵,T是一个N x N变换结果。
H包含哈尔基函数hk(z),z∈[0,1],k = 0,1,2,…,N-1,其中N = 2n。要生成矩阵H,要定义整数k,k = 2p + q - 1,其中0<= p <= n-1,当p = 0时,q = 0或1;当p≠0时,1<= q <= 2n
在这里插入图片描述
N x N哈尔变换矩阵的第i行包含了元素hi(z),其中z = 0/N,1/N,2/N,…,(N-1)/N。
如2 x 2的哈尔变换矩阵为:
在这里插入图片描述
当N = 4时,且假设k,p,q的值如下:
在这里插入图片描述
时,4 x 4的变换矩阵H4为:
在这里插入图片描述
H2的行可用于定义一个2抽头完美重建滤波器组(见子带编码)的分析滤波器h0(n)和h1(n),以及最简单且最古老的小波变换的缩放比例和小波向量。

二、多分辨率展开

在多分辨率分析(MRA)中,尺度函数被用于建立一个函数或一幅图像的一系列近似,相邻两近似之间的分辨率相差2倍。使用称为小波的附加函数来对相邻近似之间的差进行编码。

2.1 级数展开

一个信号或函数f(x)可展开为函数的线性组合:
在这里插入图片描述
k为有限和或无限和的整数下标,αk为展开系数,φk(x)为展开函数。
展开唯一,即任意给定的f(x)只有一组αk与之对应。则φk(x)称为基函数,集合{φk(x)}称为可表示这样一类函数的
可展开的函数形成了一个函数空间,称为展开集合的闭合跨度,表示如下:
在这里插入图片描述
对任意函数空间V及相应的展开集合{φk(x)},都有一个表示为{φk ̃(x)}的对偶函数集合。展开系数αk即是对偶函数φk ̃(x)和函数f(x)的内积。
在这里插入图片描述

2.2 尺度函数

考虑由实、平方可积函数φ(x)的整数平移和二值尺度组成的展开函数集合{φj,k(x)}
在这里插入图片描述
其中φj,k(x)对所有的j,k∈Z(整数集)和φ(x)属于L2(R)都成立(L2(R)表示度量的、平方可积的一维函数集合,R为实数集)。
整数平移k决定了φj,k(x)沿x轴的位置;尺度j决定了φj,k(x)的宽度;2j/2控制函数的幅度。
因为φj,k(x)的形状随j发生变化,故φ(x)称为尺度函数
选择适当的φ(x),可使{φj,k(x)}张成L2(R)。
对任意的j,将k上张成的子空间表示为:
在这里插入图片描述
增加j就会增加Vj的大小,进而允许子空间中包含具有更小变量或更细细节的函数。因为随着j的增大,用于表示子空间函数的φj,k(x)会变窄,且x有较小变化就可以分开。
在这里插入图片描述
hφ(n)为小波函数系数,hφ为小波向量。

2.3 小波函数

满足MRA要求的尺度函数被定义为小波函数ψ(x),它与其整数平移及二值尺度一起,跨越了任意连个相邻尺度子空间Vj和Vj+1之间的差。
在这里插入图片描述
对跨越图中Wj空间的所有k∈Z,定义小波集合{ψj,k(x)}
在这里插入图片描述
使用尺度函数,可以写出:
在这里插入图片描述
如果f(x)∈Wj,则
在这里插入图片描述
尺度函数和小波函数子空间由下式联系起来
在这里插入图片描述
⨁表示空间并集,Vj+1中Vj的正交补集是Wj,且Vj中的所有成员与Wj中的所有成员都正交。故
在这里插入图片描述
所有可度量的、平方可积的函数空间可以表示为
在这里插入图片描述
若f(x)是V1而非V0的元素,则(1)式的展开包含使用V0尺度函数的f(x)的近似;来自W0的小波将对这种近似于实际函数之间的差进行编码。故可推广:
在这里插入图片描述
j0是任意开始尺度。
因为小波空间存在于由相邻较高分辨率尺度函数跨越的空间中,故小波函数可表示成平移后的双倍分辨率尺度函数的加权和,表示如下:
在这里插入图片描述
hψ(n)为小波函数系数,hψ为小波向量。
利用小波跨越正交补集空间和整数小波平移是正交的条件,可得hψ(n)和hφ(n)按下述方式相关:
在这里插入图片描述

三、小波变换

3.1 一维小波变换

3.1.1 小波级数展开

与小波ψ(x)和尺度函数φ(x)相关的函数f(x)∈L2(R)的小波级数展开如下:
在这里插入图片描述
j0是任意的开始尺度,cj0(k)和dj(k)分别是尺度函数和小波函数下的展开系数αk的改写形式。cj0(k)称为近似和/或尺度系数,dj(k)称为细节和/小波系数。
哈哈啊
在这里插入图片描述
即为被展开的函数和展开函数的内积。

3.1.2 离散小波变换

上一小节的小波系数展开将一个连续变量函数映射为一系列系数。若待展开的函数是离散的(即数字序列),则得到的系数就称为离散小波变换(DWT)。则序列f(n)的正向DWT系数(类似于上一节的cj0(k)和dj(k))如下:
在这里插入图片描述
其中φj0,k(n)ψj,k(n)是基函数φj0,k(x)ψj,k(x)的取样形式,n = 0,1,2,…,M-1。所以f(n)的展开如下:
在这里插入图片描述

3.1.3 连续小波变换

离散小波变换的自然延伸是连续小波变换(CWT),连续小波变换将一个连续函数变换为两个连续变量(平移和尺度)的高冗余度函数。得到的变换易于解释并且对于时间-频率分析是有价值的。我们感兴趣的是离散图像,此处只是为了完整性。
连续

  • 34
    点赞
  • 168
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值