【模板】判断线段是否相交

如果相交返回true,不相交返回false


bool check(Node a, Node b, Node c, Node d){
    if(!(min(a.x,b.x) <= max(c.x,d.x)
     && min(c.y,d.y) <= max(a.y,b.y) 
     && min(c.x,d.x) <= max(a.x,b.x)
     && min(a.y,b.y) <= max(c.y,d.y))) 
         return 0;//所在矩形都不重叠 肯定不相交
    double u, v, w, z;
    u = (c.x - a.x) * (b.y - a.y) - (b.x - a.x) * (c.y - a.y);
    v = (d.x - a.x) * (b.y - a.y) - (b.x - a.x) * (d.y - a.y);
    w = (a.x - c.x) * (d.y - c.y) - (d.x - c.x) * (a.y - c.y);  
    z = (b.x - c.x) * (d.y - c.y) - (d.x - c.x) * (b.y - c.y);
    return u * v < -eps && w * z < -eps;//跨立实验 解释如下 
}

关于跨立实验的解释(转自勿忘初心0924)

如果两条线段相交,那么必须跨立,就是以一条线段为标准,另一条线段的两端点一定在这条线段的两段
也就是说a b两点在线段cd的两端,c d两点在线段ab的两端
这里就用到了向量X乘的知识点,有向量X乘的物理意义知:AB x CD=-CD x AB
看下图:
跨立实验
(ca x cd)·(cb x cd)<=0 则说明ca cb先对于cd的方向不同,则a b在线段cd的两侧,由此可以判断其他点

转载于:https://www.cnblogs.com/hjmmm/p/10504635.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值