排列组合计数原则

读《Elementary Probability Theory》,我们来讨论排列组合计数(counting)原则。

计数(counting)basically是实验为基础的(This probability should be have something to do with the experimental frequency of the occurrence of the event.[1])。就是我们可以想象成实验的具体操作,这样就有step 1, step 2,……,每个step有实验结果(possibilities)。

计数的基本规则(Fundamental Rule[2])是:如果step 1有 m 1 m_1 m1个possibilities,step i i i m i m_i mi个possibilities,那么, r r r个有序步骤所有可能的possibilities是 m 1 × m 2 × ⋯ × m r m_1 \times m_2\times \cdots \times m_r m1×m2××mr

因为,我们想象一下:树。第一层 m 1 m_1 m1个节点,每个节点有 m 2 m_2 m2个子节点,即第二层有 m 1 × m 2 m_1\times m_2 m1×m2个节点,……,到了第r层,有 m 1 × m 2 × ⋯ × m r m_1 \times m_2\times \cdots \times m_r m1×m2××mr个节点。(就是说,我们计算的是第r层有多少个节点。树,从第r层回溯到第1层的路径是一个解决方案。我们把这棵树印在脑子里,节点数可以加,可以乘。即计数的基本规则原理是树。)

例如,某西餐店的餐前有奶油蘑菇汤、土豆浓汤、蔬菜色拉3个选择,主食有牛排、猪排、鱼排、披萨、意大利肉酱面5个选择,甜点有冰淇淋、蛋糕、橙汁、咖啡4个选择,那么所有可能的组合是 3 ∗ 5 ∗ 4 = 60 3*5*4=60 354=60个。这个次序不能颠倒。

但如果以最终结果论, r r r个步骤的先后顺序不计呢?本文的目标聚焦于这个问题。但这么说什么意思呢?下文具体讨论这本书列举的所有Cases。

首先, 为什么计算概率要计数(counting)?

集合和随机变量均基于样本空间(sample space)和样本点(sample point)的概念,在排列组合计数、统计、随机分布、随机过程所有场景,我们在心里首先要明了所面临的问题的sample space和sample points是什么。

样本空间(sample space Ω \Omega Ω)是实验的所有可能的结果(outcomes)的集合,每个独一无二的结果是一个sample point。一个事件(event)是其子集,包含一部分sample points。

sample space这个集合的sample point数目可能是有限的、可数但无限(countably infinite)、不可数且无限。当sample space有限时,且每个sample point的位置平等时,比如一副牌每张牌是机会均等的,制作均匀的骰子,正反面均匀的硬币,那么实验结果是随机地选择一个sample point。

举例。

伯努利分布(Bernoulli distribution)实验是扔一次硬币,sample space Ω \Omega Ω是集合{正面,反面}或者更简单符号化表示 { H , T } \{H, T\} {H,T} H H H=Heads, T T T=Tails。
可见sample points ω \omega ω有两个, ω 1 = H , ω 2 = T \omega_1=H,\omega_2=T ω1=Hω2=T

二项分布(Binomial distribution)实验是扔n次硬币、k次正面朝上。例如扔三次硬币,sample space Ω = { ( H , H , H ) , ( H , H , T ) , ( H , T , H ) , ( H , T , T ) , ( T , H , H ) , ( T , H , T ) , ( T , T , H ) , ( T , T , T ) } \Omega=\{(H, H, H), (H, H, T), (H, T, H), (H, T, T), (T, H, H), (T, H, T), (T, T, H), (T, T, T)\} Ω={(H,H,H),(H,H,T),(H,T,H),(H,T,T),(T,H,H),(T,H,T),(T,T,H),(T,T,T)},sample points有八个, ω 1 = ( H , H , H ) \omega_1=(H, H, H) ω1=(H,H,H) ω 2 = ( H , H , T ) \omega_2=(H, H, T) ω2=(H,H,T),……, ω 8 = ( T , T , T ) \omega_8=(T, T, T) ω8=(T,T,T)

在想象中,我们动手操作一次一次做实验,需要厘清的是:实验所有可能的结果≠实验实际操作所得的结果列表。

比如,扔一枚硬币“实验所有可能的结果”是 { H , T } \{H, T\} {H,T}。但扔一枚硬币5次,可能得到的结果是 ( H , H , H , H , T ) (H,H,H,H,T) (H,H,H,H,T)。也就是说sample space是实验所有可能的不同的结果。(集合精确地表达了这个含义。)

历史上最早这样定义一个事件(event)发生的概率:event 子集中有多少个sample points, A A A的基数 ∣ A ∣ |A| A,sample space一共有多少个sample points, Ω \Omega Ω的基数 ∣ Ω ∣ |\Omega| Ω,

P ( A ) = ∣ A ∣ ∣ Ω ∣ = Number of outcomes favorable to  A total number of outcomes in  Ω P(A)=\frac{|A|}{|\Omega|}=\frac{\text{Number of outcomes favorable to }A}{\text{total number of outcomes in }\Omega} P(A)=ΩA=total number of outcomes in ΩNumber of outcomes favorable to A

当然这个概率计算方法前提很严格:每个sample point发生几率相等(equally likely)。这被称为naive的定义。

在naive场景中,计算概率就变成了计数(counting,数数)问题:sample space Ω \Omega Ω有几个sample points,事件 A A A子集有几个sample points。

我们来细数四个不同情况(case)的计数方法。

采样任务是:一个透明容器中有m个可区分(distinguishable)的球,编码为 1 1 1 m m m。在不同的具体条件下采样(sampling) n n n个球。问有多少个可能的arrangements(设 a a a = the number of all possible outcomes, a a a 表示 “arrangements”)。

“透明”表示我们可以看到每个球。我们的实验做一次产生一次不同的arrangement。我们不是在黑箱中摸球,否则做实验有可能两个outcome相同,在数数中让人困惑。

Case I: replacement + ordering

Case I: 每取一个球后,容器内补充一个和取走的球相同的球(sample space不变),取得的球按顺序摆放。(Sampling with replacement and with ordering)

问题: n n n drawings,取得的球按顺序摆放(我们想象将取到的球排成一列,像是台球花球露着编号排成一排),可以用 n n n维数组( n n n-tuple)表示 ( b 1 , b 2 , ⋯   , b n ) (b_1, b_2, \cdots, b_n) b1,b2,,bn,每个 b i b_i bi是球的编码,即1到 m m m的任意数。
这样的数组数目有多少个?

a = m n a=m^n a=mn

(以下两个类比将事情复杂化,使人累,略过不读也无妨。只是借此说明为什么计数要列举4个一般化的cases,因为这是数学建模,modeling。

扔一个硬币,如果正面反面的概率相等(equally likely),相当于一个容器中有2个可区分的球,编码为1,0,取1个球。连续扔一枚硬币 n n n次,我们可以想象取得的球排成一串01码。

掷一个均匀骰子连续6次,相当于一个容器中6个可区分的球,取球6次。如果一次扔6个骰子,每个骰子distinguishable,也是这个情况。)

简述allocating model

书中说物理学家和工程师在计数中更喜欢想象成“往盒中放球(putting balls into boxes”),这是allocating models。sampling models和allocating models一一对应。我们可以理解为 ( b 1 , b 2 , ⋯   , b n ) (b_1, b_2, \cdots, b_n) b1,b2,,bn n n n个不同的盒子。

我们这样想象:把 m m m个球label好,排成一排。把 n n n个盒子也label好,排成一排。

sampling models的操作是按照盒子的顺序依次随机取球。我先给box 1#取个球,有多少种可能性;然后给box 2#取个球,有多少种可能性;依次取球;最后给box n#取个球,有多少种可能性。

allocating models的操作是按照球的顺序,给球找个box放进去。我先拿着ball 1#,有几个box可以选择,有时人们称为有多少个位置(position)可以选择,然后给ball 2#找个位置,有多少个位置可以选择;依次下去。

在本Case中,举个例子,5个球,6个盒子,每个盒子一个球。那么sampling model说,第1个盒子有5个选择,第2个盒子也有5个选择,……,第6个盒子也有5个选择,所以, a = 5 6 a=5^6 a=56。allocating model无法解释。

(后来我试着每个case做sampling model和allocating model的对比讨论,我想allocating model可被用于permutation以及分组情况下将一组视为一个box。下文我在allocating model适用的case讨论allocating model。)

Case II: no replacement + ordering

Case II:每次取球后不补充球了(就让容器内少一个球),取得的球按顺序摆放(Sampling without replacement and with ordering)。

问题: n n n维数组( n n n-tuple) ( b 1 , b 2 , ⋯   , b n ) (b_1, b_2, \cdots, b_n) b1,b2,,bn,每个 b j b_j bj不同,有多少个不同的n维数组?

答:step 1 a 1 a_1 a1表示 b 1 b_1 b1有多少种可能的取法, a 1 = ( m 1 ) a_1=\binom{m}{1} a1=(1m), step 2 a 2 = ( m − 1 1 ) a_2=\binom{m-1}{1} a2=(1m1),…, step j a j = ( m − j + 1 1 ) a_j=\binom{m-j+1}{1} aj=(1mj+1),…, step n a n = ( m − n + 1 1 ) a_n=\binom{m-n+1}{1} an=(1mn+1), 按照Fundamental Rule,

a = a 1 × ⋯ × a n = m × ( m − 1 ) × ⋯ × ( m − n + 1 ) = ( m ) n a=a_1\times \cdots \times a_n=m\times (m-1) \times \cdots \times (m-n+1)=(m)_n a=a1××an=m×(m1)××(mn+1)=(m)n

符号 ( m ) n (m)_n (m)n 表示从 m m m m − n + 1 m-n+1 mn+1连乘 (continued product) n n n个数。

示例见下文“问题5”。

Case IIa:no replacement + ordering(排列)

n = m n=m n=m时,这种情况是 m m m个球的排列(permutation of m distinguishable balls),

a = m × ( m − 1 ) × ⋯ × 1 = m ! a=m\times (m-1) \times \cdots \times 1=m! a=m×(m1)××1=m!

Sampling model vs. allocating model讨论:
举例:7个球,7个盒子,每个盒子1个球。
Sampling model说:第1盒子有7个球可以选择,第2个盒子有6个球可以选择,……,第7个盒子有1个选择。所以, a = 7 ! a=7! a=7!
Allocating model说:第1个球有7个盒子的位置可以选择,第2个球有6个位置可以选择,……,第7个球有1个位置可以选择。所以, a = 7 ! a=7! a=7!

另一示例见下文“问题2”。

Case III: no replacement + no ordering(组合)

Case III:每次取球后不补充球了,取得的球不按顺序摆放(就放成乱七八糟的一堆,或视为不可区分)(Sampling without replacement and without ordering)。

问题: n n n drawing后得到基数为n的集合 A = { b 1 , b 2 , ⋯   , b n } A=\{b_1, b_2, \cdots, b_n\} A={b1,b2,,bn},每个 b j b_j bj不同,这样的集合有多少个?

答:step 1 a 1 = ( m 1 ) a_1=\binom{m}{1} a1=(1m), step 2 a 2 = ( m − 1 1 ) a_2=\binom{m-1}{1} a2=(1m1),…, step j a j = ( m − j + 1 1 ) a_j=\binom{m-j+1}{1} aj=(1mj+1),…, step n a n = ( m − n + 1 1 ) a_n=\binom{m-n+1}{1} an=(1mn+1)

但是,每个step取得的结果之间没有顺序的,比如 m = 6 m=6 m=6 n = 3 n=3 n=3时, { 2 , 4 , 5 } , { 2 , 5 , 4 } , { 4 , 2 , 5 } , { 4 , 5 , 2 } , { 5 , 2 , 4 } , { 5 , 4 , 2 } \{2,4,5\},\{2,5,4\},\{4,2,5\},\{4,5,2\},\{5,2,4\},\{5,4,2\} {2,4,5},{2,5,4},{4,2,5},{4,5,2},{5,2,4},{5,4,2}六个sampling结果,是同一个集合,只能算1个arrangement。即需要除以 n n n steps的permutation n ! n! n!

a = m × ( m − 1 ) × ⋯ × ( m − n + 1 ) n ! = m ! n ! ( m − n ) ! = ( m n ) a=\frac{m\times (m-1) \times \cdots \times (m-n+1)}{n!}=\frac{m!}{n!(m-n)!}=\binom{m}{n} a=n!m×(m1)××(mn+1)=n!(mn)!m!=(nm)
读“ m m m choose n n n”,称为从 m m m个球中取 n n n个球的组合(combination)。

示例见下文“问题1”。

Case IIIa: 分组,组内无顺序,组间有顺序。

Case IIIa: m m m个球有分成 r r r个不同的组。

假设 m 1 m_1 m1 个球是1号色, m 2 m_2 m2 个球是2号色, …, m r m_r mr 个球是r号色。同色的球无法区分(indistinguishable)。 m 1 + m 2 + ⋯ + m r = m m_1+m_2+\cdots+m_r=m m1+m2++mr=m,有多少个可区分的arrangements?

问题: m m m drawings, r r r groups, 每一次sampling的结果是 r r r-tuples ( { b 1 , 1 , ⋯   , b 1 , m 1 } , { b 2 , 1 , ⋯   , b 2 , m 2 } , { b 3 , 1 , ⋯   , b 3 , m 1 } , ⋯   , { b r , 1 , ⋯   , b r , m r } ) (\{b_{1,1},\cdots, b_{1,m_1}\}, \{b_{2,1},\cdots, b_{2,m_2}\}, \{b_{3,1},\cdots, b_{3,m_1}\},\cdots, \{b_{r,1},\cdots, b_{r,m_r}\}) ({b1,1,,b1,m1},{b2,1,,b2,m2},{b3,1,,b3,m1},,{br,1,,br,mr})

step 1, m m m次drawing有 m m m个位置,其中 m 1 m_1 m1个位置是1号色的球,有 ( m m 1 ) \binom{m}{m_1} (m1m)的possibilities。同理, step 2 ( m − m 1 m 2 ) \binom{m-m_1}{m_2} (m2mm1), step 3 ( m − m 1 − m 2 m 3 ) \binom{m-m_1-m_2}{m_3} (m3mm1m2),……, step r ( m r m r ) \binom{m_r}{m_r} (mrmr),故,

a = ( m m 1 ) ( m − m 1 m 2 ) ⋯ ( m − m 1 − ⋯ − m r − 1 m r ) = m ! m 1 ! m 2 ! ⋯ m r ! a=\binom{m}{m_1}\binom{m-m_1}{m_2}\cdots \binom{m-m_1-\cdots-m_{r-1}}{m_r} =\frac{m!}{m_1!m_2!\cdots m_r!} a=(m1m)(m2mm1)(mrmm1mr1)=m1!m2!mr!m!

(值得注意的是,step 1选择 m 1 m_1 m1个位置,step 2选择 m 2 m_2 m2个位置,如果反之,step 1选择 m 2 m_2 m2个位置,step 2选择 m 1 m_1 m1个位置,a值是不变的,我们从上面的公式推导可以看出来。即 r-tuples ( { b 2 , 1 , ⋯   , b 1 , m 2 } , { b 1 , 1 , ⋯   , b 1 , m 1 } , { b 3 , 1 , ⋯   , b 3 , m 1 } , ⋯   , { b r , 1 , ⋯   , a r , m r } ) (\{b_{2,1},\cdots, b_{1,m_2}\}, \{b_{1,1},\cdots, b_{1,m_1}\}, \{b_{3,1},\cdots, b_{3,m_1}\},\cdots, \{b_{r,1},\cdots, a_{r,m_r}\}) ({b2,1,,b1,m2},{b1,1,,b1,m1},{b3,1,,b3,m1},,{br,1,,ar,mr})arrangements数不变。r-tuple中r个集合的顺序做一个排列的变换,arrangements数不变。那不失一般性,不妨以 m 1 , m 2 , m 3 , ⋯ m_1, m_2, m_3,\cdots m1,m2,m3,为顺序。

但这和实际经验不符。就跟高考录取似的,先挑学生的学校把最喜欢的学生挑走,这是不公平的。哪里随机抽样了?

我们这样想象:假设一个班52人,一个老师手里有一副牌(无大小王),洗好,老师不知道牌的顺序。现在这群学生在操场上玩,突然咔,时间静止,每个人原地保持不动。老师走到每个人面前发牌。最后时间恢复正常,大家翻牌,花色相同的一组。分组后,还按黑红梅方的顺序在教室从靠窗到靠门,依次坐成四排。)

例如, m 1 = m 2 = 2 , m = 4 m_1=m_2=2,m=4 m1=m2=2,m=4, 球有黑球、白球两种,
所有的可能的arrangements有6个:

••oo   \space   •o•o   \space   •oo•   \space   o•o•   \space   o••o   \space   oo••

或者以黑球组先、白球组后的2-tuple表示: ( { 1 , 2 } , { 3 , 4 } ) , ( { 1 , 3 } , { 2 , 4 } ) ,   ( { 1 , 4 } , { 2 , 3 } ) ,   ( { 2 , 4 } , { 1 , 3 } ) , ( { 2 , 3 } , { 1 , 4 } ) , ( { 3 , 4 } , { 1 , 2 } ) (\{1,2\},\{3,4\}), (\{1,3\},\{2,4\}),\space(\{1,4\},\{2,3\}),\space(\{2,4\},\{1,3\}),(\{2,3\},\{1,4\}), (\{3,4\},\{1,2\}) ({1,2},{3,4}),({1,3},{2,4}), ({1,4},{2,3}) ({2,4},{1,3}),({2,3},{1,4}),({3,4}{1,2})

这个例子使用allocating model:球labelled为2-tuples ( { b 1 , b 2 } , { w 1 , w 2 } ) (\{b_1,b_2\}, \{w_1,w_2\}) ({b1,b2},{w1,w2}),盒子labelled为 ( 1 , 2 , 3 , 4 ) (1,2,3,4) (1,2,3,4),所以step 1,为两个黑球找两个位置,step 2,为两个白球找两个位置。

这里我们讨论的sample points(或ball或box)只有一类,下文示例中“问题4”sample points有两类,有更精细的组的label。

Case IIIb:分组,组内无顺序,组间亦无顺序。

Case IIIb: m m m个人或物分成 r r r个group, m 1 m_1 m1个 分在 第1组, m 2 m_2 m2个分在第2组,……, m r m_r mr 个 分在第 r r r组, m 1 + m 2 + ⋯ + m r = m m_1+m_2+\cdots+m_r=m m1+m2++mr=m m j ≥ 1 m_j\geq1 mj1。各组无分先后。

问题:m drawings,r group,我们得到 { { b 1 , 1 , ⋯   , b 1 , m 1 } , { b 2 , 1 , ⋯   , b 2 , m 2 } , ⋯   , { b r , 1 , ⋯   , b r , m r } } \{\{b_{1,1},\cdots, b_{1,m_1}\}, \{b_{2,1},\cdots, b_{2,m_2}\},\cdots, \{b_{r,1},\cdots, b_{r,m_r}\}\} {{b1,1,,b1,m1},{b2,1,,b2,m2},,{br,1,,br,mr}},这样的集合有多少个?故,

a = ( m m 1 ) ( m − m 1 m 2 ) ⋯ ( m r m r ) r ! = m ! m 1 ! m 2 ! ⋯ m r ! r ! a=\frac{\binom{m}{m_1}\binom{m-m_1}{m_2}\cdots \binom{m_r}{m_r}}{r!}=\frac{m!}{m_1!m_2!\cdots m_r!r!} a=r!(m1m)(m2mm1)(mrmr)=m1!m2!mr!r!m!
举例:4个人分两人一组,有几种分法?
{{1,2},{3,4}},   \space   {{1,3},{2,4}},   \space  {{1,4},{2,3}}

这样分组比如对弈、打乒乓球,桌子两边条件同样好。

但如果分组是乒乓球双打,第1组可以先挑桌子哪一边,且先发球,那么组和组是有先后的,就变成Case IIIa了。

另一示例见“问题4”。

Case IV: replacement + no ordering

Case IV:每次取球补充球,所取得球不按顺序摆放(Sampling with replacement and without ordering)。

问题: n n n drawings, { b 1 , b 2 , ⋯   , b n } \{b_1, b_2, \cdots, b_n\} {b1,b2,,bn}, 但是 b j b_j bj可能数字相同,这样这个set的基数最多 n n n,最少1,不确定。

举个例子,掷6个骰子,这6个骰子肉眼看不出来区别(indistinguishable),问有多少种可能的arrangements,就属于这个情况。

我们先看一个更简单的例子,掷2个硬币,这两个硬币肉眼看不出来区别,问有多少种可能的arrangements?

穷举。实验结果TT,记为 { T , T } \{T, T\} {T,T} (为了直观,尽管集合 { T , T } = { T } \{T, T\}=\{T\} {T,T}={T});实验结果HH, { H , H } \{H, H\} {H,H} ;实验结果为HT或TH, { T , H } \{T, H\} {T,H} a = 3 a=3 a=3

我们说计数是以实验为基础的。
这种情况让人很迷惑:两个硬币肉眼无法区分(indistinguishable),HT和TH是不是同一个sample point?不是的,实验中两个硬币是独立的,每个硬币独立运作,即事实上这两个硬币是可区分(distinguishable)的,可被编码(labelled)或被取名字(identified),或者想象成电玩游戏币红的、蓝的。虽然在实验中每个硬币是独立的,可是人们肉眼就是无法区分,游戏规则中也不区分(比如大富翁游戏有三个骰子,一个颜色不同,另两个不区分,甚至点数和才是重点),算算看有几种arrangements,这是可以计算的,但我们要理解这是在实验基础上归类了。

这时的计算方法是用打卡(check)的方式表示抽到过几号球了,但打卡符号相同,先后顺序就看不出来。

我们来解答上一个问题:掷6个骰子,这6个骰子肉眼看不出来区别,问有多少种可能的arrangements。

首先按照现实label每个骰子(假设在骰子的某个角落有细小的编码ABCDEF,不凑近看看不见,但我们用放大镜观察结果,按这个编码顺序来记录结果。更可行的是,使用红橙黄绿蓝紫六色骰子,以此颜色顺序来记录结果),我们设一张表格,上面写着骰子的显示的点1~6。之后每次掷骰子,到对应的点数下打卡。假设第一次掷骰子各骰子的点数是 ( 2 , 1 , 3 , 4 , 5 , 2 ) (2,1,3,4,5,2) (2,1,3,4,5,2),首先到2所在列check,然后1所在列check,……,最后在2所在列check。(其实一眼望去,就可以看到两个2,其余为1345。)

123456
√ \surd √ √ \surd\surd √ \surd √ \surd √ \surd

如果第二次的结果碰巧也是 ( 2 , 1 , 3 , 4 , 5 , 2 ) (2,1,3,4,5,2) (2,1,3,4,5,2),这不是不同的possibilities,不登记结果。

如果第三次的结果是 ( 1 , 1 , 2 , 2 , 1 , 1 ) (1,1,2,2,1,1) (1,1,2,2,1,1),登记在表格第二行:

123456
√ \surd √ √ \surd\surd √ \surd √ \surd √ \surd
√ √ √ √ \surd\surd\surd\surd √ √ \surd\surd

第四次结果是 ( 1 , 2 , 3 , 4 , 5 , 6 ) (1,2,3,4,5,6) (1,2,3,4,5,6),第五次结果是 ( 2 , 1 , 4 , 3 , 6 , 5 ) (2,1,4,3,6,5) (2,1,4,3,6,5),从实验的角度这是不同的possibilities,但从本次计数的条件看,登记的结果相同(数组沦为集合),只能算1个arrangement,登记在第三行。(其实我们一眼望去就认为两次结果相同,哪怕使用不同颜色的骰子。)

123456总结
√ \surd √ √ \surd\surd √ \surd √ \surd √ \surd √ ∣ √ √ ∣ √ ∣ √ ∣ √ \surd \mid \surd \surd \mid \surd \mid \surd \mid \surd
√ √ √ √ \surd\surd\surd\surd √ √ \surd\surd √ √ √ √ ∣ √ √ ∣ ∣ ∣ ∣ \surd\surd\surd\surd \mid \surd\surd \mid \mid \mid \mid
√ \surd √ \surd √ \surd √ \surd √ \surd √ \surd √ ∣ √ ∣ √ ∣ √ ∣ √ ∣ √ \surd \mid \surd \mid \surd \mid \surd \mid \surd \mid \surd

这样我们可以看出一个规律:6个check符号被5个bar符号相隔。那就是11个位置中取6个,即Case III,

a = ( m − 1 + n n ) a= \binom{m-1+n}{n} a=(nm1+n)

综上所述,计数的原则是:
1)分解成独立的step 1,step 2,…, step r r r
2)每个step内部计算arrangements。
3)所有step的结果之间是否有order。本身顺序化的step内含顺序,如果没有order,需要除以 r ! r! r!

示例

问题1:(质量管理)假设550个苹果有2%个坏苹果,随机选取25个苹果有2个坏苹果的概率是多少?

解: Ω \Omega Ω={550个苹果取25个}, A A A={25个苹果有两个坏苹果}。

坏苹果: 550 × 2 % = 11 550\times 2\%=11 550×2%=11,好苹果539个。
∣ Ω ∣ = ( 550 25 ) |\Omega|=\binom{550}{25} Ω=(25550)
Step 1:539个好苹果取23个。 a 1 = ( 539 23 ) a_1=\binom{539}{23} a1=(23539)

Step 2:11个坏苹果1取2个。 a 2 = ( 11 2 ) a_2=\binom{11}{2} a2=(211)

∣ A ∣ = a 1 × a 2 = ( 539 23 ) × ( 11 2 ) |A|=a_1\times a_2=\binom{539}{23}\times\binom{11}{2} A=a1×a2=(23539)×(211)
故,
P ( A ) = ∣ A ∣ ∣ Ω ∣ = ( 539 23 ) × ( 11 2 ) ( 550 25 ) P(A)=\frac{|A|}{|\Omega|}=\frac{\binom{539}{23}\times\binom{11}{2}}{\binom{550}{25} } P(A)=ΩA=(25550)(23539)×(211)


问题2:一副牌彻底洗好(52张,无大小王),4个A连在一起的概率是多少?

解: Ω \Omega Ω={52张牌彻底洗好}, A A A={4个A连在一起}.
∣ Ω ∣ = 52 ! |\Omega|=52! Ω=52!

Step 1:将4个A视为一个整体,一共有49个位置,取1个放A。 a 1 = ( 49 1 ) 4 ! a_1=\binom{49}{1}4! a1=(149)4!

Step 2:其余48张牌有多少arrangements? a 2 = 48 ! a_2=48! a2=48!
∣ A ∣ = a 1 × a 2 = ( 49 1 ) 4 ! × 48 ! |A|=a_1\times a_2=\binom{49}{1}4!\times48! A=a1×a2=(149)4!×48!
故,
P ( A ) = ∣ A ∣ ∣ Ω ∣ = ( 49 1 ) 4 ! × 48 ! 52 ! P(A)=\frac{|A|}{|\Omega|}=\frac{\binom{49}{1}4!\times48!}{52! } P(A)=ΩA=52!(149)4!×48!


问题3:15个新生要均分到3个班级去。假设其中三人是学霸。每班分到一个学霸的概率是多少?一个班分到3个学霸的概率是多少?

解:回答第一问:每班分到一个学霸的概率是多少?

Ω \Omega Ω={15个新生均分成三组}, A A A={15个学生均分为3组每组含一个学霸}。

假设这三组组间有顺序,因为分好了,每一组要插到现有的班级去。

∣ Ω ∣ = ( 15 5 ) × ( 10 5 ) × ( 5 5 ) = 15 ! 5 ! 5 ! 5 ! |\Omega|=\binom{15}{5} \times \binom{10}{5} \times \binom{5}{5} =\frac{15!}{5!5!5!} Ω=(515)×(510)×(55)=5!5!5!15!

Step 1:12个学生选4个,3个学霸学生选1个。 a 1 = ( 12 4 ) ( 3 1 ) a_1=\binom{12}{4}\binom{3}{1} a1=(412)(13)

Step 2:8个学生选4个,2个学霸学生选1个。 a 2 = ( 8 4 ) ( 2 1 ) a_2=\binom{8}{4} \binom{2}{1} a2=(48)(12)

Step 3: 4个学生选4个,1个学霸学生选1个。 a 3 = ( 4 4 ) ( 1 1 ) a_3=\binom{4}{4} \binom{1}{1} a3=(44)(11)

∣ A ∣ = a 1 × a 2 × a 3 = ( 12 4 ) ( 3 1 ) × ( 8 4 ) ( 2 1 ) × ( 4 4 ) ( 1 1 ) = 12 ! 4 ! 4 ! 4 ! 3 ! |A|=a_1\times a_2 \times a_3=\binom{12}{4}\binom{3}{1} \times \binom{8}{4} \binom{2}{1} \times \binom{4}{4} \binom{1}{1}=\frac{12!}{4!4!4!}3! A=a1×a2×a3=(412)(13)×(48)(12)×(44)(11)=4!4!4!12!3!
故,
P ( A ) = ∣ A ∣ ∣ Ω ∣ = 12 ! 4 ! 4 ! 4 ! 3 ! 15 ! 5 ! 5 ! 5 ! P(A)=\frac{|A|}{|\Omega|}=\frac{\frac{12!}{4!4!4!}3!}{\frac{15!}{5!5!5!} } P(A)=ΩA=5!5!5!15!4!4!4!12!3!

就算组与组之间无顺序, ∣ A ∣ |A| A ∣ Ω ∣ |\Omega| Ω 都需要除以 3 ! 3! 3!, P ( A ) P(A) P(A) 不变。

回答第二问:一个班包含3个学霸学生。

∣ Ω ∣ |\Omega| Ω相同。

假设组与组之间有顺序。

学生被labelled为: ( s 1 , s 2 , ⋯   , s 12 , w 1 , w 2 , w 3 ) (s_1,s_2,\cdots,s_{12},w_1,w_2,w_3) (s1,s2,,s12,w1,w2,w3)

3组被 labelled为3种形式:
( { w 1 , w 2 , w 3 , s i 1 , s i 2 } , { s i 3 , s i 4 , ⋯   , s i 7 } , { s i 8 , ⋯   , s i 12 } ) (\{w_1,w_2,w_3,s_{i1},s_{i2}\},\{s_{i3},s_{i4},\cdots,s_{i7}\},\{s_{i8},\cdots,s_{i12}\}) ({w1,w2,w3,si1,si2},{si3,si4,,si7},{si8,,si12})
( { s i 1 , s i 2 , ⋯   , s i 5 } , { s i 6 , s i 7 , w 1 , w 2 , w 3 } , { s i 8 , ⋯   , s i 12 } ) (\{s_{i_1},s_{i_2},\cdots,s_{i_5}\},\{s_{i_6},s_{i_7},w_1,w_2,w_3\},\{s_{i_8},\cdots,s_{i_{12}}\}) ({si1,si2,,si5},{si6,si7,w1,w2,w3},{si8,,si12})
( { s i 1 , s i 2 , ⋯   , s i 5 } , { s i 6 , s i 7 , ⋯   , s i 10 } , { s i 11 , s i 12 , w 1 , w 2 , w 3 } ) (\{s_{i_1},s_{i_2},\cdots,s_{i_5}\},\{s_{i_6},s_{i_7},\cdots,s_{i_{10}}\},\{s_{i_{11}},s_{i_{12}},w_1,w_2,w_3\}) ({si1,si2,,si5},{si6,si7,,si10},{si11,si12,w1,w2,w3})

i 1 , ⋯   , i 12 i_1,\cdots,i_{12} i1,,i12 is a rearrangement of 1 , 2 , ⋯   , 12 1,2,\cdots,12 1,2,,12

Step 1:选择一组分配三个学霸学生。
a 1 = ( 3 1 ) a_1=\binom{3}{1} a1=(13)

Step 2:如果学霸学生在第1组,其他学生12取2分配到第一组,10取5分配到第2组,5取5分配到第3组。
a 21 = ( 12 2 ) ( 10 5 ) ( 5 5 ) = 12 ! 2 ! 5 ! 5 ! a_{21}=\binom{12}{2}\binom{10}{5}\binom{5}{5}=\frac{12!}{2!5!5!} a21=(212)(510)(55)=2!5!5!12!

如果学霸学生在第2组,其他学生是12取5,7取2,5取5这样分配。

a 22 = ( 12 5 ) ( 7 2 ) ( 5 5 ) = 12 ! 5 ! 2 ! 5 ! = a 1 a_{22}=\binom{12}{5}\binom{7}{2}\binom{5}{5}=\frac{12!}{5!2!5!}=a_1 a22=(512)(27)(55)=5!2!5!12!=a1

如果学霸学生在第3组,其他学生是12取5,7取5,2取2这样分配。
a 23 = ( 12 5 ) ( 7 5 ) ( 2 2 ) = 12 ! 5 ! 5 ! 2 ! = a 1 = a 2 a_{23}=\binom{12}{5}\binom{7}{5}\binom{2}{2}=\frac{12!}{5!5!2!}=a_1=a_2 a23=(512)(57)(22)=5!5!2!12!=a1=a2

这样的话, ∣ A ∣ = a 21 + a 22 + a 23 = a 1 × a 21 |A|=a_{21}+a_{22}+a_{23}=a_1\times a_{21} A=a21+a22+a23=a1×a21
∣ A ∣ = ( 3 1 ) × 12 ! 2 ! 5 ! 5 ! |A|=\binom{3}{1}\times \frac{12!}{2!5!5!} A=(13)×2!5!5!12!
故,
P ( A ) = ∣ A ∣ ∣ Ω ∣ = 3 × 12 ! 2 ! 5 ! 5 ! 15 ! 5 ! 5 ! 5 ! P(A)=\frac{|A|}{|\Omega|}=\frac{3\times \frac{12!}{2!5!5!}}{\frac{15!}{5!5!5!} } P(A)=ΩA=5!5!5!15!3×2!5!5!12!
同样的,就算组与组之间无顺序, P ( A ) P(A) P(A) 不变。


问题4:6个色子掷出3对的概率是多少?

解: Ω = { ( ω 1 , ω 2 , ⋯   , ω 6 ) } \Omega=\{(\omega_1, \omega_2,\cdots,\omega_6)\} Ω={(ω1,ω2,,ω6)} ω i \omega_i ωi是第i个骰子,值为骰子的点数,1到6的数字。
A = { ( ( { p 11 , p 12 } , d 1 ) , ( { p 21 , p 22 } , d 2 ) , ( { p 31 , p 32 } , d 3 ) ) } A=\{((\{p_{11},p_{12}\},d_1),(\{p_{21},p_{22}\},d_2),(\{p_{31},p_{32}\}, d_3))\} A={(({p11,p12},d1),({p21,p22},d2),({p31,p32},d3))} p i j p_{ij} pij表示骰子的label,第几个骰子,用字母A-F表示; d i d_i di表示骰子的点数。
∣ Ω ∣ = 6 6 |\Omega|=6^6 Ω=66

我们想想看,如果将色子按A-F这个顺序记录实验结果,配成三对,那么 ( 1 , 1 , 3 , 4 , 3 , 4 ) (1,1,3,4,3,4) (1,1,3,4,3,4)这个实验结果和 ( 3 , 3 , 1 , 4 , 1 , 4 ) (3,3,1,4,1,4) (3,3,1,4,1,4)是不同的,但分組情況相同。组与组之间没有顺序,不失一般性,我们可以将实验结果的记录顺序为: p 11 p_{11} p11是第1个色子A, p 11 < p 12 , p 21 < p 22 , p 31 < p 32 , p 11 < p 21 < p 31 p_{11}<p_{12},p_{21}<p_{22},p_{31}<p_{32},p_{11}<p_{21}<p_{31} p11<p12,p21<p22,p31<p32,p11<p21<p31

比如 ( 1 , 1 , 3 , 4 , 3 , 4 ) (1,1,3,4,3,4) (1,1,3,4,3,4)记为 ( ( { A , B } , 1 ) , ( { C , E } , 3 ) , ( { D , F } , 4 ) ) ((\{A,B\},1),(\{C,E\},3),(\{D,F\}, 4)) (({A,B},1),({C,E},3),({D,F},4))
( 3 , 3 , 1 , 4 , 1 , 4 ) (3,3,1,4,1,4) (3,3,1,4,1,4)记为 ( ( { A , B } , 3 ) , ( { C , E } , 1 ) , ( { D , F } , 4 ) ) ((\{A,B\},3),(\{C,E\},1),(\{D,F\}, 4)) (({A,B},3),({C,E},1),({D,F},4))

Step 1:分三组,组与组之间没有顺序。
a 1 = ( 6 2 ) ( 4 2 ) ( 2 2 ) / 3 ! = 15 a_1=\binom{6}{2}\binom{4}{2}\binom{2}{2}/3!=15 a1=(26)(24)(22)/3!=15

Step 2:每一组选择点数。这个结果是有顺序的。
a 2 = ( 6 1 ) ( 5 1 ) ( 4 1 ) = 120 a_2=\binom{6}{1}\binom{5}{1}\binom{4}{1}=120 a2=(16)(15)(14)=120

我们有没有因为实验结果使用配对集合而缩小 ∣ A ∣ |A| A?因为每一对的点数相同,没有缩小。例如 ( 1 , 1 , 3 , 4 , 3 , 4 ) (1,1,3,4,3,4) (1,1,3,4,3,4),没有另外一个实验结果记为 ( ( { A , B } , 1 ) , ( { C , E } , 3 ) , ( { D , F } , 4 ) ) ((\{A,B\},1),(\{C,E\},3),(\{D,F\}, 4)) (({A,B},1),({C,E},3),({D,F},4))

∣ A ∣ = a 1 × a 2 = 15 × 120 = 1800 |A|=a_1\times a_2=15\times 120=1800 A=a1×a2=15×120=1800

P ( A ) = ∣ A ∣ ∣ Ω ∣ = 1800 6 6 P(A)=\frac{|A|}{|\Omega|}=\frac{1800}{6^6} P(A)=ΩA=661800

如果问掷4个骰子,有两对的概率是多少?我们可以利用上面“4个人分两人一组”的分析,一共3个arrangements。分组后有 6 × 5 6\times 5 6×5个点数可能。 P ( A ) = ∣ A ∣ ∣ Ω ∣ = 3 × 6 × 5 6 4 P(A)=\frac{|A|}{|\Omega|}=\frac{3\times 6\times 5}{6^4} P(A)=ΩA=643×6×5


问题5:(生日)n个人至少有两个人生日相同的概率是多少?

解: Ω \Omega Ω={n个人,生日的可能性是365天}, A A A={至少有两个人生日相同}. A c A^c Ac={每个人生日都不同}

∣ Ω ∣ = 36 5 n |\Omega|=365^n Ω=365n
我们来计算每个人生日都不同的概率。

Step 1:第 1 1 1个人的生日有 365 365 365个possibilities。 a 1 = 365 a_1=365 a1=365

Step 2:第 2 2 2个人的生日有 364 364 364个possibilities。 a 2 = 364 a_2=364 a2=364

Step n:第 n n n个人的生日有 365 − n + 1 365-n+1 365n+1个possibilities。 a n = 365 − n + 1 a_n=365-n+1 an=365n+1

∣ A c ∣ = ( 365 ) n |A^c|=(365)_n Ac=(365)n

故,
P ( A ) = 1 − ∣ A c ∣ ∣ Ω ∣ = 1 − ( 365 ) n 36 5 n P(A)=1-\frac{|A^c|}{|\Omega|}=1-\frac{(365)_n}{365^n} P(A)=1ΩAc=1365n(365)n

参考:
[1]Kai Lai Chung, Farid AitSahlia,《Elementary Probability Theory初等概率论 第4版》, p28
[2]Kai Lai Chung, Farid AitSahlia,《Elementary Probability Theory初等概率论 第4版》, p48
[3]Kai Lai Chung, Farid AitSahlia,《Elementary Probability Theory初等概率论 第4版》, p63

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值