[1]Matt Jackson (Stanford), GTO-7-03: The Shapley Value, Game Theory Online, Nov 22, 2013, https://www.youtube.com/watch?v=qcLZMYPdpH4&list=PLeY-lFPWgBTif4PmLSN8eJsfOhFv_QUPl&index=3
[2]Kevin Leyton-Brown (UBC), GTO-7-04: The Core, Nov 22, 2013, Game Theory Online, https://www.youtube.com/watch?v=DW_-I8UuU6I&list=PLeY-lFPWgBTif4PmLSN8eJsfOhFv_QUPl&index=4
[3]Lloyd S. Shapley, A value for n-person games, "The Shapley value -Essays in honor of Lloyd S. Shapley Edited by Alvin E. Roth", Chapter 2, http://www.library.fa.ru/files/roth2.pdf
[4]王培志 杨依山,『2012年度诺贝尔经济学奖得主学术贡献评介』,http://www.jjxdt.org/home/show?channelID=11904&itemID=84930
[5]Matt Jackson (Stanford), GTO-7-05: Comparing the Core and the Shapley Value in an Example, Nov 22, 2013, Game Theory Online, https://www.youtube.com/watch?v=zmtFhP4cMhQ&list=PLeY-lFPWgBTif4PmLSN8eJsfOhFv_QUPl&index=5
【轉註】夏普利值(the Shapley Value,又稱沙普利值[4]),用於定義團隊內部各成員的收益分配。Shapley先生定義該值的原因見其1953年發表的論文[3],他期望評估團隊博弈(coalition,或cooperative games)的博弈價值,進而定義每個成員分配得到多少(夏普利值):
博弈論的基礎是一個假設:參與者(players,又稱玩家)可以評估他們的收益(utility),參加博弈有望收穫更多(prospect)。將這個理論運用到各領域時,一個人會期望被允許考慮參加遊戲可獲取什麼(having)。
Jackson教授介紹夏普利值的思想[1]:每個參與者的收益要和他們的邊際貢獻(marginal contributions)成正比。
設集合是所有參與者的集合,。
設博弈價值函數為。的定義域是集合的子集,值域是實數。是可優加(superadditive)的集合函數。
我這樣理解“優加性”(superadditivity):人們組隊參加博弈,因為團隊運作的收益有望高於單幹每個人收益的總和,從而每個人分配可得更多。比如,個人聯合起來開公司的收益高於個人self-employed的收益總和。
以下介紹三大公理[1]。
我們稱參與者和是可互換(interchangeable)的,如果對於所有,。可互換的參與者得到的收益相同。
公理1:Symmetry。任意,如果參與者和可互換,則其夏普利值相等,。
公理2:dummy player。我們稱參與者是無貢獻者(dummy player),如果其對團隊的貢獻是0,即對於所有,。
公理3:Additivity。如果一個遊戲可拆成兩個子遊戲,分別可評估博弈價值,那麼每個參與者的分配所得可以是兩個子遊戲的分配所得相加。
我們可以直覺地理解為兩個獨立項目的收益分別分給項目組成員。
現在定義夏普利值(Shapley value)。
這是參與者在所有小團隊內的邊際貢獻的平均值。我們通過例子來看為什麼是這個公式。
例1:投票[2]
國會有四個政黨(A、B、C、D)的成員組成,分別有45、25、15、15人。現在投票決定是否審批100百萬(=1億)美金作為政黨經費。按多數原則,即至少51人同意,才通過審批。
我們認為每個政黨內部的意見是統一的,所以可視為4個參與者,。
現在四個政黨的代表依次投票。那麼順序有以下24種排列(permutation)。
1 12 123 1234 ……(1)
1 12 124 1243 ……(2)
1 13 132 1324 ……(3)
1 13 134 1342 ……(4)
1 14 142 1423 ……(5)
1 14 143 1432 ……(6)
2 21 213 2134 ……(7)
2 21 214 2143 ……(8)
2 23 231 2314 ……(9)
2 23 234 2341 ……(10)
2 24 241 2413 ……(11)
2 24 243 2431 ……(12)
3 31 312 3124 ……(13)
3 31 314 3142 ……(14)
3 32 321 3214 ……(15)
3 32 324 3241 ……(16)
3 34 341 3412 ……(17)
3 34 342 3421 ……(18)
4 41 412 4123 ……(19)
4 41 413 4132 ……(20)
4 42 421 4213 ……(21)
4 42 423 4231 ……(22)
4 43 431 4312 ……(23)
4 43 432 4321 ……(24)
其中1第一出現的情形有(1)-(6),6個,即。
1第二出現的情形有3個前置S,
(7)(8),
(13)(14),
(19)(20),
1第三出現的情形有231(9),241(11),321(15),341(17),421(21),431(23),前置S有3個:,(9)(15),
,(11)(21),
,(17)(23),
1第四出現的情形有2341(10),2431(12),3241(16),3421(18),4231(22),4321(24)。前置S只有1個。
以上所有值求平均值:
參與者2,3,4的計算同理。
例2:三人決策,兩票通過,但必含一個重要參與者。[5]
每個參與者的出場情形列舉如下:
1 12 123 ……(1)
1 13 132 ……(2)
2 21 213 ……(3)
2 23 231 ……(4)
3 31 312 ……(5)
3 32 321 ……(6)
分析同上例。
例3:在線拍賣物品
假如Mia現在是淘寶店的老闆,賣一款野營凳,Mia進貨時100元,第一個顧客Rose認為這個商品值150元,第二個顧客Tom認為這個商品值200元。求此三人的夏普利值。
Mia、Rose、Tom為Player 1、2、3,。
每個人的出場順序,同例2。
這樣我們可以看出生產者和商人的夏普利值(即邊際貢獻)高出很多(佔本博弈價值的79%),出價高的買主夏普利值高。我們可以看到。
假設只有Rose一個買主就成交(Tom沒有參與),我們來計算Mia和Rose的夏普利值。
1 12
2 21
兩個交易相比,可以看出,就GDP而言,出價高的人提高生產者和商人的邊際貢獻(夏普利值)的絕對值(158.3 vs. 125),降低其在博弈價值中的相對佔比(83% vs. 79%)。有出價更高的人的話,次高的人夏普利值變低(25 vs. 8.3)。聽說有的電商平台的商品價格是根據交易機器調整價格,這時候出場順序很重要,一個人早於Tom買,可以150成交,晚於Tom買,以200成交。這樣,出價低的人、創造力生產力和經商能力不足的人會越來越沒有購買力。也許是成熟商品、日用品價格保持穩定(或任店主手工調整),新銳產品根據交易量和有人願意出高價變化價格。