夏普利值(the Shapley Value)的定義和舉例

本文介绍了夏普利值的概念,它是衡量合作博弈中参与者边际贡献的平均值,用于确定团队内部收益分配。通过投票、三人决策和在线拍卖等案例,展示了夏普利值如何计算及影响。文章强调了博弈论中的可加性、对称性和无贡献者公理,并探讨了夏普利值在实际场景中的应用。
摘要由CSDN通过智能技术生成

[1]Matt Jackson (Stanford), GTO-7-03: The Shapley Value, Game Theory Online, Nov 22, 2013, https://www.youtube.com/watch?v=qcLZMYPdpH4&list=PLeY-lFPWgBTif4PmLSN8eJsfOhFv_QUPl&index=3

[2]Kevin Leyton-Brown (UBC), GTO-7-04: The Core, Nov 22, 2013, Game Theory Online, https://www.youtube.com/watch?v=DW_-I8UuU6I&list=PLeY-lFPWgBTif4PmLSN8eJsfOhFv_QUPl&index=4

[3]Lloyd S. Shapley, A value for n-person games,  "The Shapley value -Essays in honor of Lloyd S. Shapley Edited by Alvin E. Roth", Chapter 2, http://www.library.fa.ru/files/roth2.pdf

[4]王培志 杨依山,『2012年度诺贝尔经济学奖得主学术贡献评介』,http://www.jjxdt.org/home/show?channelID=11904&itemID=84930

[5]Matt Jackson (Stanford), GTO-7-05: Comparing the Core and the Shapley Value in an Example, Nov 22, 2013, Game Theory Online, https://www.youtube.com/watch?v=zmtFhP4cMhQ&list=PLeY-lFPWgBTif4PmLSN8eJsfOhFv_QUPl&index=5

【轉註】夏普利值(the Shapley Value,又稱沙普利值[4]),用於定義團隊內部各成員的收益分配。Shapley先生定義該值的原因見其1953年發表的論文[3],他期望評估團隊博弈(coalition,或cooperative games)的博弈價值,進而定義每個成員分配得到多少(夏普利值):

博弈論的基礎是一個假設:參與者(players,又稱玩家)可以評估他們的收益(utility),參加博弈有望收穫更多(prospect)。將這個理論運用到各領域時,一個人會期望被允許考慮參加遊戲可獲取什麼(having)。

Jackson教授介紹夏普利值的思想[1]:每個參與者的收益要和他們的邊際貢獻(marginal contributions)成正比。

設集合N是所有參與者的集合,N=\{1,2,...,n\}

設博弈價值函數為vv的定義域是N集合的子集,值域是實數。v是可優加(superadditive)的集合函數。

v(\emptyset) = 0 \text{\space \space \space \space \space \space (1)}

v(S) \geq v(S\cap T)+v(S-T) \text{\space \space \space \space \space \space }(S, T \subseteq N) \text{\space \space \space \space \space \space (2)}

我這樣理解“優加性”(superadditivity):人們組隊參加博弈,因為團隊運作的收益有望高於單幹每個人收益的總和,從而每個人分配可得更多。比如,n個人聯合起來開公司的收益高於n個人self-employed的收益總和。

以下介紹三大公理[1]。

我們稱參與者ij是可互換(interchangeable)的,如果對於所有S(S\subset N)v(S\cup \{i\})=v(S\cup\{j\})。可互換的參與者得到的收益相同。

公理1:Symmetry。任意v,如果參與者ij可互換,則其夏普利值相等,\phi_i(N,v)=\phi_j(N,v)

公理2:dummy player。我們稱參與者i是無貢獻者(dummy player),如果其對團隊的貢獻是0,即對於所有Sv(S\cup \{i\})=v(S)

 公理3:Additivity。如果一個遊戲可拆成兩個子遊戲,分別可評估博弈價值,那麼每個參與者的分配所得可以是兩個子遊戲的分配所得相加。

v=v_1+v_2, (v_1+v_2)(S)=v_1(S)+v_2(S)

\phi_i(N,v_1+v_2)=\phi_i(N,v_1)+\phi_i(N,v_2)

我們可以直覺地理解為兩個獨立項目的收益分別分給項目組成員。

現在定義夏普利值(Shapley value)。

\phi_i(N,v)=\frac{1}{n!}\sum_{S\subseteq N\setminus \{i\}}s!(n-s-1)![v(S\cup \{i\})-v(S)], n=|N|, s=|S|

這是參與者i在所有小團隊內的邊際貢獻的平均值。我們通過例子來看為什麼是這個公式。

例1:投票[2]

國會有四個政黨(A、B、C、D)的成員組成,分別有45、25、15、15人。現在投票決定是否審批100百萬(=1億)美金作為政黨經費。按多數原則,即至少51人同意,才通過審批。

我們認為每個政黨內部的意見是統一的,所以可視為4個參與者,N=\{1,2,3,4\}

現在四個政黨的代表依次投票。那麼順序有以下24種排列(permutation)。

1        12        123        1234      ……(1)

1        12        124        1243      ……(2)

1        13        132        1324      ……(3)

1        13        134        1342      ……(4)

1        14        142        1423      ……(5)

1        14        143        1432      ……(6)

2        21        213        2134      ……(7)

2        21        214        2143      ……(8)

2        23        231        2314      ……(9)

2        23        234        2341      ……(10)

2        24        241        2413      ……(11)

2        24        243        2431      ……(12)

3        31        312        3124      ……(13)

3        31        314        3142      ……(14)

3        32        321        3214      ……(15)

3        32        324        3241      ……(16)

3        34        341        3412      ……(17)

3        34        342        3421      ……(18)

4        41        412        4123      ……(19)

4        41        413        4132      ……(20)

4        42        421        4213      ……(21)

4        42        423        4231      ……(22)

4        43        431        4312      ……(23)

4        43        432        4321      ……(24)

v(\{1\})=v(\{2\})=v(\{3\})=v(\{4\})=0

v(\{1,2\})=v(\{1,3\})=v(\{1,4\})=100

v(\{2,3\})=v(\{2,4\})=v(\{3,4\})=0

v(\{1,2,3\})=v(\{1,3,4\})=v(\{1,2,4\})=100

v(\{2,3,4\})=100

v(\{1,2,3,4\})=100​​​​​​​

其中1第一出現的情形有(1)-(6),6個,即S=\emptyset, s=0,n-s-1=3,s!(n-s-1)!=6,v(\{1\})-v(\emptyset)=0

1第二出現的情形有3個前置S,

(7)(8),S=\{2\}, s=1,n-s-1=2,s!(n-s-1)!=2,v(\{2,1\})-v(\{2\})=100

(13)(14),S=\{3\}, s=1,n-s-1=2,s!(n-s-1)!=2,v(\{3,1\})-v(\{3\})=100

(19)(20),S=\{4\}, s=1,n-s-1=2,s!(n-s-1)!=2,v(\{4,1\})-v(\{4\})=100

1第三出現的情形有231(9),241(11),321(15),341(17),421(21),431(23),前置S有3個:S=(\{2,3\}),(9)(15),

S=\{2,3\}, s=2,n-s-1=1,s!(n-s-1)!=2,v(\{2,3,1\})-v(\{2,3\})=100

S=(\{2,4\}),(11)(21),

S=\{2,4\}, s=2,n-s-1=1,s!(n-s-1)!=2,v(\{2,4,1\})-v(\{2,4\})=100

S=(\{3,4\}),(17)(23),S=\{3,4\}, s=2,n-s-1=1,s!(n-s-1)!=2,v(\{3,4,1\})-v(\{3,4\})=100

1第四出現的情形有2341(10),2431(12),3241(16),3421(18),4231(22),4321(24)。前置S只有1個。

S=(\{2,3,4\}), s=3,n-s-1=0,s!(n-s-1)!=6,v(\{2,3,4,1\})-v(\{2,3,4\})=0

以上所有值求平均值:

\phi_1(N,v)=\frac{1}{24}[6\times(v(\{1\})-v(\emptyset))+2\times(v(\{2,1\})-v(\{2\}))+2\times v(\{3,1\})-v(\{3\})+2\times(v(\{2,1\})-v(\{2\}))+2\times (v(\{2,3,1\})-v(\{2,3\}))+2\times(v(\{2,4,1\})-v(\{2,4\}))+2\times(v(\{3,4,1\})-v(\{3,4\}))+6\times (v(\{2,3,4,1\})-v(\{2,3,4\}))]=1200/24=50

參與者2,3,4的計算同理。

例2:三人決策,兩票通過,但必含一個重要參與者。[5]

每個參與者的出場情形列舉如下:

1        12        123     ……(1)

1        13        132     ……(2)

2        21        213     ……(3)

2        23        231     ……(4)

3        31        312     ……(5)

3        32        321     ……(6)

​​​​​​​分析同上例。

例3:在線拍賣物品

假如Mia現在是淘寶店的老闆,賣一款野營凳,Mia進貨時100元,第一個顧客Rose認為這個商品值150元,第二個顧客Tom認為這個商品值200元。求此三人的夏普利值。

Mia、Rose、Tom為Player 1、2、3,N=\{1,2,3\}

每個人的出場順序,同例2。

v(\{1\})=100,v(\{2\})=v(\{3\})=v(\{2,3\})=0,v(\{1,2\})=150,v(\{1,3\})=v(\{1,2,3\})=200

\phi_1(N,v)=\frac{1}{6}[(2\times(v(\{1\})-v(\emptyset)))+1\times(v(\{2,1\})-v(\{2\}))+1\times(v(\{3,1\})-v(\{3\}))+2\times(v(\{2,3,1\})-v(\{2,3\})) ] =\frac{1}{6}(2\times 100+150+200+2\times200)=\frac{950}{6}=158.3

\phi_2(N,v)=\frac{50}{6}=8.3

\phi_3(N,v)=\frac{200}{6}=33.3

這樣我們可以看出生產者和商人的夏普利值(即邊際貢獻)高出很多(佔本博弈價值的79%),出價高的買主夏普利值高。我們可以看到\phi_1+\phi_2+\phi_3=v(\{1,2,3\})=200

假設只有Rose一個買主就成交(Tom沒有參與),我們來計算Mia和Rose的夏普利值。

1 12

2 21

v(\{1\})=100,v(\{2\})=0,v(\{1,2\})=150

\phi_1(N,v)=\frac{1}{2}(100+150)=125

\phi_2(N,v)=\frac{1}{2}(50)=25

​​​​​​​兩個交易相比,可以看出,就GDP而言,出價高的人提高生產者和商人的邊際貢獻(夏普利值)的絕對值(158.3 vs. 125),降低其在博弈價值中的相對佔比(83% vs. 79%)。有出價更高的人的話,次高的人夏普利值變低(25 vs. 8.3)。聽說有的電商平台的商品價格是根據交易機器調整價格,這時候出場順序很重要,一個人早於Tom買,可以150成交,晚於Tom買,以200成交。這樣,出價低的人、創造力生產力和經商能力不足的人會越來越沒有購買力。也許是成熟商品、日用品價格保持穩定(或任店主手工調整),新銳產品根據交易量和有人願意出高價變化價格。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值