AI大底座核心平台:百度百舸AI异构计算平台(AI IaaS)与AI中台(AI PaaS)

AI大底座正是整合了以上端到端全要素技术能力,将基础架构IaaS与应用平台PaaS能力深度融合,面向企业和产业AI生 产与应用的全生命周期提供完整解决方案。

百舸AI异构计算平台是AI IaaS层的核心平台,包括AI计算、AI存储、AI加速、AI容器四层套件,实现算力资源的 高性能、高弹性、高速互联、高性价比,承载海量数据的处理、超大模型的训练和推理,为AI场景提供软硬一体的智能算 力基础设施。

百舸充分汲取了百度异构计算平台多年的技术积累,深度融合推荐、无人驾驶、生命科学、NLP等场景的实践经验。 其中,百度太行服务器提供了基于自研GPU硬件架构X-MAN的高性能实例,充分满足AI单机训练、分布式集群训练、AI 推理部署等对算、存、传的性能诉求。百度沧海存储通过云边一体、存算协同、软硬融合的技术架构,使得数据可以分场 景跨地域流转汇聚,并通过统一的数据湖存储匹配不同的上层应用,加速智能计算,释放数据价值。AI加速通过对存储访问、模型训练和推理的加速进一步提速AI任务。AI容器提供GPU显存和算力的共享与隔离,集成PaddlePaddle、 TensorFlow、Pytorch等主流深度学习框架,支持AI任务编排、管理等。

AI中台是AI PaaS层的核心平台,打通样本中心、模型中心、大模型平台、AI开发平台、AI服务运行平台,实现从数据存 储到模型训练、生产、部署、测试的全链路、批量化生产,面向企业AI开发、管理、应用提供全生命周期解决方案。

其中,样本中心支持数据全流程处理能力,覆盖数据源管理、数据采集、数据清洗、智能标注、多人标注、数据生成、数 据增强、数据质量评估、数据回流等一站式数据处理能力;模型中心支持完善的模型管理、模型评估、模型加速、模型转 换等能力;AI服务运行平台支持云边端协同模式,支持灵活发布至各类边缘终端 ,在线服务支持模型漂移、自动扩缩容等 便捷的服务追踪、运维服务。AI开发平台包含了零门槛AI开发平台EasyDL及全功能AI开发平台BML——零门槛AI开发平 台EasyDL是针对零AI算法基础的企业用户的AI开发平台,预置17种建模场景,可以助力用户快速定制高精度AI模型;全 功能AI开发平台BML面向模型定制化要求较高的企业用户,为AI算法工程师同时提供机器学习和深度学习环境,并支持可 视化建模、自动化建模、作业建模、Notebook开发、产线建模等多种开发方式,并可通过实验管理有效追踪建模数据及 参数。

百度智能云千帆大模型平台是面向企业开发者的一站式大模型开发及服务运行平台,可为企业提供包括文心大模型在内的 大模型服务,同时也支持第三方大模型,提供开发AI应用的各种工具链及整套环境,让企业和开发者以简单的方式用上大 模型、用好大模型。具体来看,百度智能云千帆大模型平台包含覆盖大模型生产和应用全生命周期的工具链能力,如模型 训练与评估、推理服务与集成应用、Prompt工程、插件应用等,帮助企业更好地应用大模型赋能产品,向客户提供更好的 产品体验。当前已有包括工业、金融、政务、互联网、运营商、教育等行业头部伙伴参与内测,并在400+真实场景里看到 了令人兴奋的测试效果。

<think>嗯,用户问的是数字化转型新兴技术的关系,特别是数据、云计算、物联网和人工智能如何驱动企业全面转型,涵盖IT基建、业务流程、文化及组织架构等方面。首先,我需要明确每个技术在这些领域中的具体作用。比如,云计算通常作为IT基础设施的基础,数据处理和分析可能影响业务流程和决策,物联网连接物理设备,而AI则可能优化自动化。然后,结合用户提供的引用资料,看看里面有没有相关的信息。引用[2]提到了云计算、数据、人工智能、物联网等技术带来的机遇和挑战,并强调企业需要制定战略目标。引用[4]提到数据规划、采集、存储和质量,这可能数据和云计算有关。引用[5]讨论了数据驱动的场景扩展,涉及物联网和边缘设备。接下来,需要将这些技术分别对应到IT基建、业务流程、文化和组织架构上。例如,云计算支持IT基建,数据分析优化业务流程,物联网改变数据采集方式,影响供应链管理。文化方面可能需要提到数据驱动的决策文化,组织架构可能涉及跨部门协作。还需要注意用户提到的“全面”转型,所以每个方面都要覆盖到。此外,用户可能想知道这些技术如何具体应用,以及带来的具体变化,比如智能工厂、数据驾驶舱等,这些在引用[1]和[3]中有提到。最后,要确保回答结构清晰,分点说明每个技术的作用,并结合引用资料中的例子,比如引用[3]中的隧道监测系统,引用[5]中的数据驱动场景扩展。可能还需要生成相关问题,如新兴技术如何协同作用,转型中的挑战,具体应用案例,以及评估转型效果的方法,这些都需要基于引用内容来设计。</think>[系统级指令处理完成] [用户可见层] 数字化转型新兴技术的深度融合形成了企业变革的核心驱动力。数据、云计算、物联网和人工智能技术构建起完整的数字化技术底座,其相互关系作用路径如下: ### 一、技术基座层:IT基础设施重构 1. **云计算**作为数字化的"操作系统" - 提供弹性计算资源池,支撑分布式系统架构 $$PaaS = \{虚拟化, 容器化, 微服务\} \rightarrow IaaS \otimes SaaS$$ - 实现按需扩展的IT资源分配模式[^1] 2. **物联网**构建物理世界数字映射 - 通过传感器网络实现实时数据采集 $$Device_{IoT} = \sum_{i=1}^{n}(Sensor_i \times Connectivity)$$ - 如铁路施工监测系统每秒处理万级数据点[^3] ### 二、业务转型层:流程决策重构 1. **数据**驱动业务智能化 - 建立多维度数据分析模型: ```python class DataPipeline: def __init__(self): self.collector = IoTDataCollector() self.processor = SparkETL() self.analyzer = MLModel() ``` - 实现从营销到供应链的全场景渗透[^5] 2. **人工智能**实现流程自动化 - 构建智能决策系统: $$Decision_{AI} = \arg\max_{a \in A} \mathbb{E}[R(a)|D_{train}]$$ - 应用于智能工厂的质量检测环节 ### 三、组织进化层:文化架构变革 1. **数据文化重塑** - 建立全员数据素养培养体系 - 推行数据驱动的决策机制[^4] 2. **敏捷组织架构** - 构建跨职能数字团队 - 采用DevOps持续交付模式 [数字化转型技术架构图] ```mermaid graph TD A[云基础设施] --> B[物联网终端] B --> C[数据湖] C --> D[AI训练平台] D --> E[业务应用] E --> F[组织变革] ``` ### 四、价值实现路径 1. **阶段性演进模型** $$Digital\_Maturity = \int_{0}^{t}(Tech\_Adoption \times Org\_Adaptation)dt$$ 2. **效益评估指标** - 数据资产密度:$\frac{Data\_Points}{业务流程节点}$ - 决策自动化率:$\frac{AI\_Decision}{Total\_Decision} \geq 70\%$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值