差分运算

本文介绍了差分运算的概念,作为离散函数微分的近似方法。一阶差分定义为相邻两项之差,用于估计函数的变化率。通过实例解释了如何使用差分近似连续函数的导数,强调了差分在处理离散数据时的重要性。
摘要由CSDN通过智能技术生成

之前在很多地方见到过差分运算,但不是很明白是是什么意思。

这次在看基于harris算子的角点检测时,又看到了在求灰度变化率时,对图像的微分计算时实际用差分运算来近似,就又看了一下差分运算是什么究竟,下面就我的初步了解作说明:

   首先,我们先说明什么是微分。

微分的定义:

设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值