循环神经网络:梯度裁剪、困惑度

一、梯度裁剪

循环神经网络中很容易出现梯度衰减或爆炸。由于是循环计算,在进行反向传播的时候,梯度会传播很多次。

当传播过程中有大多数导数 > 1时,最终的梯度会出现 ∞ \infty ,即所谓梯度爆炸;当大多数导数 < 1时,最终的梯度会 → 0 \rightarrow0 0,即所谓梯度消失

对此,有一种可行的做法,称为梯度裁剪。假设将所有模型参数梯度的元素拼接成一个向量 g \boldsymbol g g,并设裁剪的阈值是 θ \theta θ。则定义裁剪后的梯度为
m i n ( θ ∥ g ∥ , 1 ) g min(\frac {\theta}{\parallel \boldsymbol g \parallel}, 1)\boldsymbol g min(gθ,1)g

即:当所求出的梯度范数 ∥ g ∥ \parallel \boldsymbol g \parallel g > 我们所能接受的阈值 θ \theta θ时,就将其缩小 θ ∥ g ∥ \frac {\theta}{\parallel \boldsymbol g \parallel} gθ倍;否则,就不变。

代码实现如下:

'''
	params: 模型的所有参数
	theta: 阈值
	ctx: cpu or gpu
'''
def grad_clipping(params, theta, ctx):
	# 求范数
	norm = nd.array([0], ctx)
	for param in params:
		norm += (param.grad ** 2).sum()
	norm = norm.sqrt().asscalar()

	if norm > theta:
		for param in params:
			param.grad[:] *= theta / norm # 梯度缩小

二、困惑度

对于语言模型的评价,通常采用困惑度(perplexity)。困惑度定义为:交叉熵损失函数做指数运算后的值。特别地,

  • 最佳情况,模型总是把标签类别的概率预测为1。此时困惑度为1
  • 最坏情况下,模型总是把标签类别的概率预测为0。此时困惑为 ∞ \infty
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值