ChatGPT 3.5只有200亿规模的参数?最新微软的论文暴漏OpenAI的ChatGPT的参数规模远低于1750亿!

本文来自DataLearnerAI官方网站:ChatGPT 3.5只有200亿规模的参数?最新微软的论文暴漏OpenAI的ChatGPT的参数规模远低于1750亿! | 数据学习者官方网站(Datalearner)icon-default.png?t=N7T8https://www.datalearner.com/blog/1051698672594665

2022年11月底发布的ChatGPT是基于OpenAI的GPT-3优化得到的可以进行对话的一个产品。直到今年更新到3.5和4之后,官方分为两个产品服务,其中ChatGPT 3.5是基于gpt-3.5-turbo打造,免费试用。因此,几乎所有人都自然认为这是一个与GPT-3具有同等规模参数的大模型,也就是说有1750亿参数规模。但是,在10月26日微软公布的CodeFusion论文的对比中,大家发现࿰

### 关于ChatGPT模型参数规模的理解 对于提到的拥有3.5万个参数ChatGPT模型,这一描述似乎存在误解或混淆。实际上,以当前的技术水平和发展状况而言,像ChatGPT这样的大型语言模型通常具备超此数量级的参数量。 例如,在已知的信息中,ChatGPT所基于的大规模预训练模型之一GPT-3含有约1750亿参数[^4]。这意味着即使是相对较小版本的变体也超过了仅含3.5万个参数的数量级。如此庞大的参数量使得模型能够在自然语言处理任务上展现出卓越性能,包括但不限于理解复杂语境、生成连贯文本以及执行多种类型的推理活动。 当提及具体到3.5万个参数的情况时,这更像是指某个特定应用场景下的微调过程或是简化版的小型化部署方案。在这种情况下,减少原始大规模模型中的大部分参数至较低水平是为了适应资源受限环境的需求,比如移动设备端的应用或者嵌入式系统的集成。这样做虽然牺牲了一定程度上的表达能力和泛化效果,但却能在保持基本功能的同时显著降低运行成本与硬件要求。 为了更好地理解和利用这类小型化的模型实例,开发者们往往会采用迁移学习的方法,即先在一个通用领域内充分训练较大尺寸的基础网络结构,再针对目标场景的具体特点进行针对性调整优化。这种方式不仅有助于提高开发效率,还能确保最终产品既满足实际需求又能有效控制开销。 ```python # 假设我们正在构建一个精简后的聊天机器人服务 from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "distilgpt2" # 这是一个较为轻量化但仍保留一定表现力的选择 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def generate_response(prompt_text): inputs = tokenizer(prompt_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=50) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response ``` 上述代码片段展示了如何加载一个名为`distilgpt2`的小型化预训练模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值