应用泛函分析的知识点

度量空间

线性空间实例:向量空间$K^n$、p方可和数列空间$l^p$、p幂可积函数空间$L^p(E)$、连续函数空间$C[a,b]$、k阶连续导数函数空间$C^k[a,b]$、矩阵空间$M_{mn}$

度量空间=定义了距离的集合。

  • Holder不等式$\Rightarrow$柯西不等式$\Rightarrow$向量空间的距离
  • Minkowski不等式$\Rightarrow$p方可和数列空间的距离

拓扑性质

  • 基于开球(邻域)定义:内点/开集、聚点/导集
  • 任意多开集的并是开集、有限个开集的交也是开集、开集的余集是闭集

连续映射:开子集的原像也是开子集

  • 稠密集:度量空间X中,$\bar{A}\supseteq B$,则A在B中稠密。B=X时,称A为X的稠密子集。
  • 可分性:可数子集稠密$\Rightarrow$可数正交基
  • 完备性:柯西序列收敛
  • 紧集:任意序列包含收敛子列$\Rightarrow$闭集、有界、完备

赋范线性空间

范数,一个泛函:非负,三角不等式,比例

所有线性空间为凸集,Banach-schauder不动点定理

Shauder基(e):$\forall x \exists a_i  \left \|  x-\sum_{i=1}^\infty a_ie_i\right \|=0 $

有限维赋范空间的完备性:每个分量构成一个柯西序列

内积空间

内积:非负、比例、共轭对称、共轭双线性函数

内积导出的范数,存在平行四边形公式

正交、正交补、正交和、正交投影、正交基、Gram-Schmit正交化

最佳逼近:$\exists y_0 = \arg \inf_{y\in M} \left \| x-y \right \|$

线性算子

同一数域上的两个线性空间之间的线性映射

有限维空间上的线性算子可用矩阵表示

有界:$\left \| Tx \right \|_Y \leqslant C\left \| x \right \|_X$,这里C为一常数

连续性$\Leftrightarrow$ 有界;一点连续,处处连续

线性算子空间B(X,Y),如果Y完备,那么B(X,Y)也完备。

线性泛函

对偶空间:赋范空间X上的有界线性泛函构成赋范空间时,称为X的对偶空间;H空间自对偶。

Riesz定理:H空间

  • 任意有界线性泛函可用内积表示$\forall f:H\rightarrow K\exists z\in H, \forall x f(x)=<x,z>,\left \| z \right \|=\left \| f \right \|$
  • 任意有界双线性泛函$f(x,y)=<Sx,y>,S:H_1\rightarrow H_2\left
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值