泛函分析笔记09:开映射与闭图象定理

3.3谱

X X X是复 B a n a c h Banach Banach空间,且 T ∈ B ( X ) T\in \mathscr B (X) TB(X) λ ∈ C \lambda \in \mathbb{C} λC

  • 正则集 ρ ( T ) = { λ : λ I − T 可 逆 } \rho(T)=\{\lambda:\lambda I-T可逆 \} ρ(T)={λ:λIT}为开集,其集合中的元素称为正则值

  • 谱集: σ ( T ) = C \ ρ ( T ) \sigma (T)=\mathbb C \backslash \rho(T) σ(T)=C\ρ(T)

  • 特征值:( λ I − T \lambda I-T λIT不是单射)存在非零元 x 0 ∈ X x_0 \in X x0X,使得 T x 0 = λ x 0 Tx_0=\lambda x_0 Tx0=λx0;点谱=特征值的集合

  • 连续谱: λ I − T \lambda I-T λIT是单射,但不是满射

注: λ I − T \lambda I -T λIT为双射 ⟹ \Longrightarrow ( λ I − T ) − 1 (\lambda I-T)^{-1} (λIT)1有界,即 λ ∈ ρ ( T ) \lambda \in \rho(T) λρ(T)

注: σ ( T ) \sigma (T) σ(T)是有界闭集

  • T T T的谱半径: r ( T ) = sup ⁡ λ ∈ σ ( T ) ∣ λ ∣ = lim ⁡ n → ∞ ∣ ∣ T ∣ ∣ n n ≤ ∣ ∣ T ∣ ∣ r(T)=\sup_{\lambda\in \sigma(T)} |\lambda|=\lim_{n\rightarrow \infty} \sqrt[n]{||T||^n} \le ||T|| r(T)=supλσ(T)λ=limnnTn T

3.4开映射与闭图象定理

定理4.6:设 T ∈ B ( X , X 1 ) T\in \mathscr B (X,X_1) TB(X,X1)为双射,则 T − 1 T^{-1} T1有界    ⟺    ∃   m > 0 \iff \exist \ m>0  m>0,使得 ∣ ∣ T x ∣ ∣ ≥ m ∣ ∣ x ∣ ∣ , ∀ x ∈ X ||Tx||\ge m||x||,\forall x\in X Txmx,xX

定理4.7:设 T ∈ B ( X ) T \in \mathscr B(X) TB(X),当 ∣ ∣ T ∣ ∣ < 1 ||T||<1 T<1时,有 I − T I-T IT有有界逆,且 ( I − T ) − 1 = ∑ n = 1 ∞ ∣ ∣ T ∣ ∣ n = 1 1 − ∣ ∣ T ∣ ∣ (I-T)^{-1}=\sum_{n=1}^\infty ||T||^n =\frac{1}{1-||T||} (IT)1=n=1Tn=1T1

推论:如果 T ∈ B ( X ) T\in \mathscr B(X) TB(X)有有界逆算子,当 ∣ ∣ S ∣ ∣ < 1 ∣ ∣ T − 1 ∣ ∣ ||S||<\frac{1}{||T^{-1}||} S<T11时, T + S T+S T+S有有界逆。

注: B ( X ) \mathscr B(X) B(X)中可逆元构成一个开集 T T T可逆时,以 T T T为中心, 1 ∣ ∣ T − 1 ∣ ∣ \frac{1}{||T^{-1}||} T11为半径中每个有界元都可逆

定义4.8:设 T : X → X 1 T:X\rightarrow X_1 T:XX1为线性算子,若 T T T X X X中的开集映射为 X 1 X_1 X1中的开集,则称 T T T为开算子。

注:由于 T T T是线性的,故 T T T是开算子    ⟺    \iff ∀ r > 0 , ∃ δ > 0 \forall r >0,\exist \delta >0 r>0,δ>0,使得 U X 1 ( 0 , δ ) ⊂ T U X ( 0 , r ) U_{X_1}(0,\delta)\subset T_{U_X}(0,r) UX1(0,δ)TUX(0,r),其中 U X ( 0 , r ) = { x ∈ X : ∣ ∣ x ∣ ∣ < r } U_X(0,r)=\{x\in X:||x||< r\} UX(0,r)={xX:x<r}

定理4.9:(开映射定理)设 X 、 X 1 X、X_1 XX1 B a n a c h Banach Banach空间, T ∈ B ( X ) T\in \mathscr B(X) TB(X)满射,则 T T T是开算子。

定理4.10:(Banach逆算子定理)设 X 、 X 1 X、X_1 XX1是Banach空间, T ∈ B ( X , X 1 ) T\in \mathscr B (X,X_1) TB(X,X1) T T T为单射和满射,则 T − 1 ∈ B ( X 1 , X ) T^{-1}\in \mathscr B (X_1,X) T1B(X1,X)

推论:设 X X X上有两个完备范数 ∣ ∣ ⋅ ∣ ∣ 1 、 ∣ ∣ ⋅ ∣ ∣ 2 ||\cdot||_1、||\cdot||_2 12,如果存在 M > 0 M>0 M>0,使得 ∣ ∣ x ∣ ∣ 1 ≤ M ∣ ∣ x ∣ ∣ 2 , ∀ x ∈ X ||x||_1\le M||x||_2,\forall x\in X x1Mx2,xX,则 ∣ ∣ ⋅ ∣ ∣ 1 ||\cdot||_1 1 ∣ ∣ ⋅ ∣ ∣ 2 ||\cdot||_2 2等价。即存在 m > 0 m>0 m>0,使得 m ∣ ∣ x ∣ ∣ 2 ≤ ∣ ∣ x ∣ ∣ 1 ≤ M ∣ ∣ x ∣ ∣ 2 , ∀ x ∈ X m||x||_2\le ||x||_1\le M||x||_2,\forall x\in X mx2x1Mx2,xX

定义4.11:设 T T T是个赋范空间 X X X到赋范空间 X 1 X_1 X1的线性算子,如果 T T T的图象 G ( T ) = { ( x , T x ) ∈ X × X 1 : x ∈ X } G(T)=\{(x,Tx)\in X\times X_1:x\in X \} G(T)={(x,Tx)X×X1:xX} X × X 1 X\times X_1 X×X1中是闭集,则称 T T T为闭算子。

定理4.12: T T T是闭算子    ⟺    \iff 由在 X X X x n → x 0 x_n\rightarrow x_0 xnx0和在 X 1 X_1 X1 T ( x n ) → y 0 T(x_n)\rightarrow y_0 T(xn)y0可知 y 0 = T x 0 y_0=Tx_0 y0=Tx0

注:验证 T T T是闭算子的常用条件:由 x n → 0 x_n\rightarrow 0 xn0 T x n → y 0 Tx_n\rightarrow y_0 Txny0可知 y 0 = 0 y_0=0 y0=0

注:连续线性算子 ⟹ \Longrightarrow 闭算子,反之不成立

定理4.13:(闭图象定理)设 X 、 X 1 X、X_1 XX1是Banach空间, T : X → X 1 T:X\rightarrow X_1 T:XX1为比线性算子,则 T T T连续

定理4.14: T T T把闭集映成闭集 ⟹ \Longrightarrow T T T是闭算子

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值