凸集

凸集(Convex Set)

对于线性空间 V V 中的任意一个集合 S, S S 满足:
α,βS,λ[0,1],λα+(1λ)βS
则称 S S 为凸集。

  1. S={XRnXXr},r>0 S = { X ∈ R n ∣ X ⊺ X ≤ r } , r > 0
  2. S={XRnAX=β},ARm×n,βRm S = { X ∈ R n ∣ A X = β } , A ∈ R m × n , β ∈ R m
  3. S={XRnAX=β,X0⃗ },ARm×n,βRm S = { X ∈ R n ∣ A X = β , X ≥ 0 → } , A ∈ R m × n , β ∈ R m
  4. S={XRnAXβ,X0⃗ },ARm×n,βRm S = { X ∈ R n ∣ A X ≤ β , X ≥ 0 → } , A ∈ R m × n , β ∈ R m
  5. S={XRnX=i=1mxiαi},xiR,xi0,i=1mxi=1,aiRn S = { X ∈ R n ∣ X = ∑ i = 1 m x i α i } , x i ∈ R , x i ≥ 0 , ∑ i = 1 m x i = 1 , a i ∈ R n
    证明: α,βS, ∀ α , β ∈ S , 存在集合
    {xiR|iN,xi0,1im},{yiR|iN,yi0,1im}, { x i ∈ R | i ∈ N , x i ≥ 0 , 1 ≤ i ≤ m } , { y i ∈ R | i ∈ N , y i ≥ 0 , 1 ≤ i ≤ m } , 使得
    α=i=1mxiαiβ=i=1myiαi, { α = ∑ i = 1 m x i α i β = ∑ i = 1 m y i α i , i=1mxi=1i=1myi=1, { ∑ i = 1 m x i = 1 ∑ i = 1 m y i = 1 ,
    λ[0,1],λα+(1λ)β=λi=1mxiαi+(1λ)i=1myiαi=i=1m(λxi+(1λ)yi)αi, ∀ λ ∈ [ 0 , 1 ] , λ α + ( 1 − λ ) β = λ ∑ i = 1 m x i α i + ( 1 − λ ) ∑ i = 1 m y i α i = ∑ i = 1 m ( λ x i + ( 1 − λ ) y i ) α i ,
    i=1m(λxi+(1λ)yi)=λi=1mxi+(1λ)i=1myi=λ+(1λ)=1 ∑ i = 1 m ( λ x i + ( 1 − λ ) y i ) = λ ∑ i = 1 m x i + ( 1 − λ ) ∑ i = 1 m y i = λ + ( 1 − λ ) = 1
    λxi+(1λ)yi0,1im, λ x i + ( 1 − λ ) y i ≥ 0 , 1 ≤ i ≤ m ,
    因此 λα+(1λ)βS λ α + ( 1 − λ ) β ∈ S

性质

对于线性空间 V V 中的任意两个凸集 S,T, 对于任意一个实数 kR, k ∈ R ,
1. kS k S 也是凸集。
证明: α,βkS,X,YS, ∀ α , β ∈ k S , ∃ X , Y ∈ S , 使得 α=kX,β=kY, α = k X , β = k Y ,
λ[0,1], ∀ λ ∈ [ 0 , 1 ] , 由于 S S 是凸集,因此 λX+(1λ)YS, 于是
λα+(1λ)β=λ(kX)+(1λ)(kY)=k[λX+(1λ)Y]kS λ α + ( 1 − λ ) β = λ ( k X ) + ( 1 − λ ) ( k Y ) = k [ λ X + ( 1 − λ ) Y ] ∈ k S
2. ST S ∩ T 也是凸集。
证明: α,βST,α,βS,α,βT, ∀ α , β ∈ S ∩ T , α , β ∈ S , α , β ∈ T ,
λ[0,1], ∀ λ ∈ [ 0 , 1 ] , 由于 S,T S , T 是凸集,因此 λα+(1λ)βS,λα+(1λ)βT, λ α + ( 1 − λ ) β ∈ S , λ α + ( 1 − λ ) β ∈ T , 于是
λα+(1λ)βST λ α + ( 1 − λ ) β ∈ S ∩ T
3. S+T={X+YXS,YT} S + T = { X + Y ∣ X ∈ S , Y ∈ T } 也是凸集。
证明: α,βS+T,X1,X2S,Y1,Y2T, ∀ α , β ∈ S + T , ∃ X 1 , X 2 ∈ S , Y 1 , Y 2 ∈ T , 使得 α=X1+Y1,β=X2+Y2, α = X 1 + Y 1 , β = X 2 + Y 2 ,
λ[0,1], ∀ λ ∈ [ 0 , 1 ] , 由于 S,T S , T 是凸集,因此 λX1+(1λ)X2S,λY1+(1λ)Y2T, λ X 1 + ( 1 − λ ) X 2 ∈ S , λ Y 1 + ( 1 − λ ) Y 2 ∈ T , 于是
λα+(1λ)β=λ(X1+Y1)+(1λ)(X2+Y2) λ α + ( 1 − λ ) β = λ ( X 1 + Y 1 ) + ( 1 − λ ) ( X 2 + Y 2 )
=[λX1+(1λ)X2]+λ[Y1+(1λ)Y2] = [ λ X 1 + ( 1 − λ ) X 2 ] + λ [ Y 1 + ( 1 − λ ) Y 2 ]
S+T ∈ S + T
4. ST={XYXS,YT} S − T = { X − Y ∣ X ∈ S , Y ∈ T } 也是凸集。
证明: α,βST,X1,X2S,Y1,Y2T, ∀ α , β ∈ S − T , ∃ X 1 , X 2 ∈ S , Y 1 , Y 2 ∈ T , 使得 α=X1Y1,β=X2Y2, α = X 1 − Y 1 , β = X 2 − Y 2 ,
λ[0,1], ∀ λ ∈ [ 0 , 1 ] , 由于 S,T S , T 是凸集,因此 λX1+(1λ)X2S,λY1+(1λ)Y2T, λ X 1 + ( 1 − λ ) X 2 ∈ S , λ Y 1 + ( 1 − λ ) Y 2 ∈ T , 于是
λα+(1λ)β=λ(X1Y1)+(1λ)(X2Y2) λ α + ( 1 − λ ) β = λ ( X 1 − Y 1 ) + ( 1 − λ ) ( X 2 − Y 2 )
=[λX1+(1λ)X2][λY1+(1λ)Y2] = [ λ X 1 + ( 1 − λ ) X 2 ] − [ λ Y 1 + ( 1 − λ ) Y 2 ]
ST ∈ S − T

凸组合(Convex Combination)

α,β,γV, ∀ α , β , γ ∈ V , λ[0,1], ∃ λ ∈ [ 0 , 1 ] , 使得 γ=λα+(1λ)β γ = λ α + ( 1 − λ ) β 则称向量 γ γ α α β β 的凸组合。若 λ(0,1), λ ∈ ( 0 , 1 ) , 则称 γ γ α α β β 的严格(strict)凸组合。

凸集的极点(Extreme point)

对于凸集 S S 中的任意一个点 γ, γ γ 不是 S S 中任意两个不同点严格凸组合,则称 α S S 的一个极点。
即: 若 α,βV,λ(0,1), 使得 γ=λα+(1λ)β, γ = λ α + ( 1 − λ ) β , α=β α = β

超平面(Hyperplane)与半平面(Half-space)

αRn,α0⃗ ,kR, ∀ α ∈ R n , α ≠ 0 → , k ∈ R , 称集合 {XRnαX=k} { X ∈ R n ∣ α ⊺ X = k } 超平面
称集合 {XRnαXk} { X ∈ R n ∣ α ⊺ X ≥ k } 半平面

性质

  1. 对于任意一个超平面 S={XRnαX=k}, S = { X ∈ R n ∣ α ⊺ X = k } ,
    X0S, ∀ X 0 ∈ S , S={XRnα(XX0)=0} S = { X ∈ R n ∣ α ⊺ ( X − X 0 ) = 0 }
    证明: X0S X 0 ∈ S αX0=k, α ⊺ X 0 = k , 因此
    XRn,XSαX=kαX=αX0α(XX0)=0 ∀ X ∈ R n , X ∈ S ⇔ α ⊺ X = k ⇔ α ⊺ X = α ⊺ X 0 ⇔ α ⊺ ( X − X 0 ) = 0
  2. 对于任意一个超平面 S={XRnαX=k}, S = { X ∈ R n ∣ α ⊺ X = k } ,
    X0S, ∀ X 0 ∈ S , 半平面 S1={XRnαXk}={XRnα(XX0)0} S 1 = { X ∈ R n ∣ α ⊺ X ≥ k } = { X ∈ R n ∣ α ⊺ ( X − X 0 ) ≥ 0 }
    证明: X0S X 0 ∈ S αX0=k, α ⊺ X 0 = k , 因此
    XRn,XS1αXkαXαX0α(XX0)0 ∀ X ∈ R n , X ∈ S 1 ⇔ α ⊺ X ≥ k ⇔ α ⊺ X ≥ α ⊺ X 0 ⇔ α ⊺ ( X − X 0 ) ≥ 0
  3. αRn,α0⃗ ,kR, ∀ α ∈ R n , α ≠ 0 → , k ∈ R , S={XRnαXk} S = { X ∈ R n ∣ α ⊺ X ≤ k } 也为超平面。
    证明: XRn,XSαXkαXk(α)Xk ∀ X ∈ R n , X ∈ S ⇔ α ⊺ X ≤ k ⇔ − α ⊺ X ≥ − k ⇔ ( − α ) ⊺ X ≥ − k
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值