「Transfer Learning」Note on AdaptSegNet(适配分割网络)

Sina Weibo:小锋子Shawn
Tencent E-mail:[email protected]
http://blog.csdn.net/dgyuanshaofeng/article/details/80024059

作者:Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang, Manmohan Chandraker

0 摘要

AdaptSegNet[1]在标签空间上进行对抗学习。针对的问题是,基于卷积网络的方法,其泛化能力不足,尤其是当训练/源图像集和测试/目标图像集之间存在较大的域差距(domain gap)或域偏移(domain shift)的时候,也即两者分布差异较大。语义分割是一个结构化输出问题,在源域和目标域的概率/标签空间上具有空间相似性(spatial similarities)。本文还使用多水平对抗网络,在不同特征水平上,进行输出空间域适配。

1 介绍

在特征空间上进行对抗学习,并且应用在语义分割任务上,有这两种经典方法,其一为No more discrimination,其二为FCNs in the Wild。特征适配可能要遭受高维特征带来的复杂性,不得不编码不同视觉线索,比如外观、形状和上下文信息。作者没有考虑特征适配,而考虑适配像素级预测。作者注意到,在语义分割中,输出空间在空间和局部上,包含丰富信息,比如源域和目标域在外观上可能非常不同,可是在分割结果上会具有很多相似性,如空间布局和局部上下文,如图1所示。

图 1:图像空间具有较大差异,而标签空间具有较小差异

与生成对抗网络类似,本文所提出模型由两部分组成,其一为分割模型,而在生成对抗网络中是生成网络,分割模型通常是全卷积网络FCN,而生成网络通常是放大网络/反卷积网络DeconvNet;其二为判别器,鉴定输入来自源分割输出,还是目标分割输出。本文所提出方法还适配多水平特征。

3 算法概述

3.1 论文中的领域适配(domain adaptation)由分割网络和判别网络组成。其中判别网络可以有多个,比如论文使用了2两个,表示使用了2两个水平的输出空间。如图1所示。首先正向传播源图像集 I s I_s Is 来优化分割器/生成器 G G G。然后预测目标图像集 I t I_t I

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值