域自适应——Learning to Adapt Structured Output Space for Semantic Segmentation

本文探讨了一种新的域自适应方法,针对语义分割任务,通过对抗学习适应低维度的softmax输出。文章提出在输出空间进行自适应,包括单级和多级对抗学习策略,以优化分割网络和鉴别器,使目标域的预测结果更接近源域。网络结构采用了DeepLab-v2框架和ResNet-101,训练过程中进行了联合优化。
摘要由CSDN通过智能技术生成

**

论文题目:Learning to Adapt Structured Output Space for Semantic Segmentation

**
论文地址:https://arxiv.org/abs/1802.10349
代码地址:https://github.com/wasidennis/AdaptSegNet

首先是基于pixel-level的理由:一方面,与基于特征描述图像全局视觉信息的图像分类不同,用于语义分割的高维特征编码了复杂的表示。因此,在特征空间中进行自适应不一定是语义分割的最佳选择。另一方面,虽然分割输出是在低维空间中,但其中包含丰富的信息,如场景布局和上下文。无论图像来自源域还是目标域,它们的分割都应该在空间和局部上具有很强的相似性。Thus, we utilize this property to adapt low-dimensional softmax outputs of segmentation predictions via an adversarial learning scheme.

1 整体框架

本篇论文是像素级别的域自适应,用了生成对抗网络的结构。网络结构包括语义分割网络G,鉴别器Di,i表示多层次对抗性学习中鉴别器的层次。*如图:

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
“你只需要90000个参数即可适应光:一款轻量级的Transformer” Light:一款轻量级的Transformer是指在模型参数数量较少的情况下,实现了对光照的适应能力。一般来说,Transformer模型通常需要巨大的参数数量来实现高质量的自然语言处理任务。然而,对于特定的任务,比如对光照的适应,研究人员最近提出了一种轻量级的Transformer模型,只需要90000个参数即可实现。 这个模型的轻量级设计主要集中在两个方面:模型架构和参数数量。首先,模型架构方面,轻量级Transformer采用了一种精简的结构,去掉了一些传统Transformer中的冗余模块。其次,在参数数量方面,研究人员通过对参数维度和层数进行有效的优化,实现了模型的轻量化。因此,这个轻量级Transformer仅需要90000个参数,就能够达到对光照的适应能力。 这个轻量级Transformer的适应光照的能力主要体现在两个方面:特征提取和模型自适应。首先,在特征提取方面,轻量级Transformer能够从输入的光照图像中提取出有效的特征表示,用于后续的任务处理。其次,在模型自适应方面,轻量级Transformer能够动态地学习并调整网络参数,从而更好地适应不同光照条件下的输入数据,提高模型的性能。 总之,通过轻量级的设计和精简的参数数量,这个仅需要90000个参数的轻量级Transformer模型能够有效地适应光照。这种模型设计的优势在于在保持良好性能的同时,减少了模型的复杂性和计算资源的需求,为光照相关任务的研究和应用提供了一种新的解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值