朴素贝叶斯法学习笔记

频率派和贝叶斯派

频率派认为可以通过大量实验,从样本推断总体。比如假定总体服从均值为 μ \mu μ,方差为 σ \sigma σ的分布。根据中心极限定理,是可以通过抽样估算总体的参数的,而且抽样次数越多,对总体的估计就越准确。需要指出的是,频率派的观点认为 μ \mu μ σ \sigma σ都是固定,就是说他们都是某个确定的值。
但实际上,实验次数越多,成本就越高,而且很多时候是没有办法进行多次试验的。这时候,频率派对总体参数的估计就会存在较大偏差。
贝叶斯派则认为,可以先对总体的参数进行粗略估计(先验概率),然后根据实验结果不断调整参数的估计值(后验概率)。而且,贝叶斯派认为参数并不是固定的,而是服从某个概率分布的值。

朴素贝叶斯法

独立同分布假设

假设训练数据集 T = ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x n , y n ) T={(x_1,y_1) ,(x_2,y_2),...,(x_n,y_n)} T=(x1,y1),(x2,y2),...,(xn,yn),可以理解为每个 x x x都代表了一个完整的case。比如 x 1 x_1 x1可以用 x 1 ( 1 ) x_1^{(1)} x1(1)来表示第一个样本的第1个特征,而一个样本可以有多个特征,比如 x 1 ( k ) x_1^{(k)} x1(k)就表示第1个样本的第 k k k个特征;而 y 1 y_1 y1就表示这个 x 1 x_1 x1这个case所属的类。
书上还有一句话,训练集是独立同分布的。也就是说所使用的到的样本都是从同一个总体中拿出来的,自然就服从同一个分布;如果不服从同分布,也就意味着我们无法得到最终的模型,我们只能根据不同的case得到不同的模型。独立就是说各样本之间互不影响,得到什么样的 y y y值,只要看自己有什么样的 x x x就可以了, x 1 x_1 x1不用去管 x 2 x_2 x2 y 2 y_2 y2值是怎么得到的。

学习过程

朴素贝叶斯法的最终目的是通过训练集学习 x x x y y y的联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)。这样当我们知道某个测试样本的 X X X,我们就可以根据联合概率分布求出 Y Y Y的概率分布。然后我们看哪个 Y Y Y能够让 P ( X , Y ) P(X,Y) P(X,Y)最大,我们就把这个 Y Y Y作为这个测试样本 X X X的类别。
我们假设 Y Y Y k k k个不同的取值,也就是说样本一共有 k k k类。而我们一共有 n n n个特征, X i ( 1 ) , X i ( 2 ) , . . . , X i ( n ) X_i^{(1)},X_i^{(2)},...,X_i^{(n)} Xi(1),Xi(2),...,Xi(n)
而为了通过训练集学到联合概率分布 P ( X , Y ) P(X,Y) P(X,Y),我们需要分别学到先验概率分布 P ( Y = c k ) P(Y=c_k) P(Y=ck)以及条件概率分布 P ( X ( 1 ) = x ( 1 ) , X ( 2 ) = x ( 2 ) , . . . , X ( n ) = x ( n ) ∣ Y = c k ) P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)}|Y=c_k) P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)Y=ck)
这是因为当我们拿到测试数据集的时候,我们面临的问题是求:
P ( Y = c k ∣ X ( 1 ) = x ( 1 ) , X ( 2 ) = x ( 2 ) , . . . , X ( n ) = x ( n ) ) P(Y=c_k|X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)}) P(Y=ckX(1)=x(1),X(2)=x(2),...,X(n)=x(n))
这是一个条件概率求解,而根据贝叶斯公式,我们知道:
P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B)=\frac{P(A)P(B|A)}{P(B)} P(AB)=P(B)P(A)P(BA)
所以上面那个条件概率就等于:
P ( Y = c k ) P ( X ( 1 ) = x ( 1 ) , X ( 2 ) = x ( 2 ) , . . . , X ( n ) = x ( n ) ∣ Y = c k ) P ( X ( 1 ) = x ( 1 ) , X ( 2 ) = x ( 2 ) , . . . , X ( n ) = x ( n ) ) ,  (1) \frac{P(Y=c_k)P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)}|Y=c_k)}{P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)})} \text{, \tag{1}} P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n))P(Y=ck)P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)Y=ck) (1)
而且我们知道朴素贝叶斯之所以朴素,就是因为这个算法假定各特征都是独立的。也就是说 X ( 1 ) X^{(1)} X(1) X ( 2 ) X^{(2)} X(2)…… X ( n ) X^{(n)} X(n)的互不影响,没有关系。其实相当于是把问题简单化了。有了这个条件,公式1就可以进一步化简:
P ( X ( 1 ) = x ( 1 ) , X ( 2 ) = x ( 2 ) , . . . , X ( n ) = x ( n ) ) = ∏ i = 1 n P ( X ( i ) = x ( i ) ) P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)})=\prod_{i=1}^nP(X^{(i)}=x^{(i)}) P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n))=i=1nP(X(i)=x(i))
P ( X ( 1 ) = x ( 1 ) , X ( 2 ) = x ( 2 ) , . . . , X ( n ) = x ( n ) ∣ Y = c k ) = ∏ i = 1 n P ( X ( i ) = x ( i ) ∣ Y = c k ) P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},...,X^{(n)}=x^{(n)}|Y=c_k)=\prod_{i=1}^nP(X^{(i)}=x^{(i)}|Y=c_k) P(X(1)=x(1),X(2)=x(2),...,X(n)=x(n)Y=ck)=i=1nP(X(i)=x(i)Y=ck)
所以公式1最后就变成了:
f 1 = P ( Y = c k ) ∏ i = 1 n P ( X ( i ) = x ( i ) ∣ Y = c k ) ∏ i = 1 n P ( X ( i ) = x ( i ) ) (2) f_1=\frac{P(Y=c_k)\prod_{i=1}^nP(X^{(i)}=x^{(i)}|Y=c_k)}{\prod_{i=1}^nP(X^{(i)}=x^{(i)})} \text{\tag{2}} f1=i=1nP(X(i)=x(i))P(Y=ck)i=1nP(X(i)=x(i)Y=ck)(2)
我们知道,现在有了样本 X ( i ) = x ( i ) X^{(i)}=x^{(i)} X(i)=x(i),现在要求的是当 f 1 f_1 f1最大的时候, c k c_k ck是多少?也就是说现在 c k c_k ck是未知量,而跟 X ( i ) X^{(i)} X(i)相关的都是由数据集提供的,所以求 f 1 f_1 f1的最大值就等价于求 f 2 f_2 f2的最大值,二者的最大值不一样(我们也不关心),但取得最大值时的 c k c_k ck是相等的。
f 2 = P ( Y = c k ) ∏ i = 1 n P ( X ( i ) = x ( i ) ∣ Y = c k ) (3) f_2=P(Y=c_k)\prod_{i=1}^nP(X^{(i)}=x^{(i)}|Y=c_k) \text{\tag{3}} f2=P(Y=ck)i=1nP(X(i)=x(i)Y=ck)(3)

参数估计
极大似然估计

朴素贝叶斯法意味着我们要估计 P ( Y = c k ) P(Y=c_k) P(Y=ck)以及 P ( X ( i ) = x ( i ) ∣ Y = c k ) P(X^{(i)}=x^{(i)}|Y=c_k) P(X(i)=x(i)Y=ck)
先验概率 P ( Y = c k ) P(Y=c_k) P(Y=ck)的极大似然估计是:
P ( Y = c k ) = ∑ i = 1 n I ( y i = c k ) N , k = 1 , 2... K P(Y=c_k)=\frac{\sum\limits_{i=1}^nI(y_i=c_k)}{N} \text ,k=1,2...K P(Y=ck)=Ni=1nI(yi=ck),k=1,2...K
而每个特征 X ( i ) X^{(i)} X(i)都可能有很多个取值,所以假设第 i i i个特征 X ( i ) X^{(i)} X(i)的可能取值为结合 { a i 1 , a i 2 . . . a i S i } \lbrace{a_{i1},a_{i2}...a_{iS_i}}\rbrace {ai1,ai2...aiSi},也就是说我们假设第 i i i个特征可能的取值 S i S_i Si种。
条件概率的极大似然估计是: P ( X ( i ) = a i l ∣ Y = c k ) = ∑ i = 1 n I ( x j ( i ) = a i l , y i = c k ) ∑ i = 1 n I ( y i = c k ) P(X^{(i)}=a_{il}|Y=c_k)=\frac{\sum\limits_{i=1}^n I(x^{(i)}_j=a_{il},y_i=c_k)}{\sum\limits_{i=1}^nI(y_i=c_k)} P(X(i)=ailY=ck)=i=1nI(yi=ck)i=1nI(xj(i)=ail,yi=ck)
上式小标太多,解释一下, x j ( i ) x^{(i)}_j xj(i)表示第 j j j个样本的第 i i i个特征, a i l a_{il} ail表示第 i i i个特征的取值为 a i l a_{il} ail
I I I为指示函数,也就是说当括号中的关系成立时, I = 1 I=1 I=1,不成立时, I = 0 I=0 I=0
所以从这里也可以看出来,这个参数的估计过程就是“数数”。先验概率就是数 Y = c k Y=c_k Y=ck出现多少次,占比多少。条件概率就是数 Y = c k Y=c_k Y=ck的时候, x ( i ) x^{(i)} x(i)这个特征取 a i l a_{il} ail出现多少次,占比多少。可想而知,这是一项庞大的“数数”工程。

贝叶斯估计

极大似然估计可能会发生一个比较尴尬的事情,比如我们就假设样本的第3个特征 X ( 3 ) X^{(3)} X(3)在训练集中所有取值为 { 1 , 3 , 5 } \lbrace1,3,5\rbrace {1,3,5},但是在测试集中,出现一个新值4。这时,如果按照极大似然法,条件概率 P ( X ( i ) = 4 ∣ Y = c k ) = 0 P(X^{(i)}=4|Y=c_k)=0 P(X(i)=4∣Y=ck)=0(因为训练集没有这个4,所以从训练集学到的条件概率就是0)。而目标函数 f 2 f_2 f2是一系列条件概率的累乘,所以最后无论其他特征的条件概率是多少, f 2 f_2 f2恒等于0。
也就意味着学到的这个联合分布,过拟合了,对新出现的数据预测能力极差。
为了避免这一现象,现在需要引入贝叶斯估计,其实也可以理解为正则化的手段。具体的,条件概率的贝叶斯估计是: P ( X ( i ) = a i l ∣ Y = c k ) = ∑ i = 1 n I ( x j ( i ) = a i l , y i = c k ) + λ ∑ i = 1 n I ( y i = c k ) + S i λ P(X^{(i)}=a_{il}|Y=c_k)=\frac{\sum\limits_{i=1}^n I(x^{(i)}_j=a_{il},y_i=c_k)+\lambda}{\sum\limits_{i=1}^nI(y_i=c_k)+S_i\lambda} P(X(i)=ailY=ck)=i=1nI(yi=ck)+Siλi=1nI(xj(i)=ail,yi=ck)+λ
上式中, λ ≥ 0 \lambda\geq0 λ0,显而易见,当 λ = 0 \lambda=0 λ=0的时候就是极大似然估计。根据习惯,经常取 λ = 1 \lambda=1 λ=1,此时称为拉普拉斯平滑。
同样,也为了避免先验概率等于0,同样可以引入贝叶斯估计: P ( Y = c k ) = ∑ i = 1 n I ( y i = c k ) + λ N + K λ P(Y=c_k)=\frac{\sum\limits_{i=1}^nI(y_i=c_k)+\lambda}{N+K\lambda} P(Y=ck)=N+Kλi=1nI(yi=ck)+λ
由于当 λ = 1 \lambda=1 λ=1,并且在样本量 N N N越来越大的时候, λ \lambda λ对先验概率和条件概率的影响就会越来越小,甚至忽略不计。这就是所谓的拉普拉斯平滑的思想。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值