Python从数值范围创建数组的区别

本文介绍了NumPy库中的numpy.asarray,numpy.frombuffer和numpy.fromiter三种创建数组的方法,分别针对不同场景:asarray用于确保数据是数组且可能节省复制,frombuffer用于高效处理二进制数据,fromiter则适合处理动态生成的大数据。
摘要由CSDN通过智能技术生成

numpy.asarray, numpy.frombuffer, 和 numpy.fromiter 是NumPy库中用于创建数组的三个不同函数,它们各自适用于不同的场景并有着不同的特性。

numpy.asarray

  • 用途numpy.asarray 用于将输入转换为一个NumPy数组。如果输入已经是一个NumPy数组,它将不会复制数据,而是直接返回原数组。对于其他类型的数据(如列表、元组、任何数组接口兼容的对象等),它会将其转换成NumPy数组。

  • 场景:这个函数非常适用于确保某个对象是NumPy数组的情况。如果你不确定输入数据的类型,但需要确保它作为一个NumPy数组来处理(不必要复制已存在的数组),那么使用asarray是一个好选择。

import numpy as np # 从列表创建数组 lst = [1, 2, 3] rr = np.asarray(lst) 

numpy.frombuffer

  • 用途numpy.frombuffer 用于从字节缓冲区(如二进制文件中读取的数据)创建一个NumPy数组,而不需要进行中间复制操作。这意味着它可以直接在原始内存缓冲区上创建数组视图,从而提高效率。

  • 场景:适用于处理二进制数据或从文件中直接读取数据的场合。例如,从一个文件读取一个大型的二进制数组时,使用frombuffer可以避免不必要的数据复制,提高程序的效率。

import numpy as np # 假设buf是从文件中读取的二进制数据 
buf = b'\x01\x02\x03\x04' 
arr = np.frombuffer(buf, dtype=np.uint8) 

numpy.fromiter

  • 用途numpy.fromiter 是从任意可迭代对象(如迭代器、生成器、列表等)创建一个新的一维NumPy数组。与asarray相比,它允许从迭代过程中动态生成的数据创建数组,同时可以指定数组的数据类型。

  • 场景:当你有一个懒加载的或无法一次性加载到内存的数据生成器时,使用fromiter可以有效地将这些数据转换为NumPy数组。这对于处理大数据集或者只能按需生成数据的情况特别有用。

import numpy as np # 从迭代器创建数组 
iterable = (x*x for x in range(5)) 
arr = np.fromiter(iterable, dtype=np.float) 

总结

  • 使用asarray来确保你的对象是一个NumPy数组,尤其是在不需要复制已经是NumPy数组的数据时。
  • frombuffer非常适合于直接从二进制数据或文件中高效加载大型数组,因为它避免了中间的复制步骤。
  • fromiter适用于从迭代器或生成器等可迭代对象创建数组,特别是当数据是动态生成且数据量可能很大时。

每种方法根据你的具体需求和数据来源的不同,都有其独特的适用场景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值