numpy.asarray
, numpy.frombuffer
, 和 numpy.fromiter
是NumPy库中用于创建数组的三个不同函数,它们各自适用于不同的场景并有着不同的特性。
numpy.asarray
-
用途:
numpy.asarray
用于将输入转换为一个NumPy数组。如果输入已经是一个NumPy数组,它将不会复制数据,而是直接返回原数组。对于其他类型的数据(如列表、元组、任何数组接口兼容的对象等),它会将其转换成NumPy数组。 -
场景:这个函数非常适用于确保某个对象是NumPy数组的情况。如果你不确定输入数据的类型,但需要确保它作为一个NumPy数组来处理(不必要复制已存在的数组),那么使用
asarray
是一个好选择。
import numpy as np # 从列表创建数组
lst = [1, 2, 3]
rr = np.asarray(lst)
numpy.frombuffer
-
用途:
numpy.frombuffer
用于从字节缓冲区(如二进制文件中读取的数据)创建一个NumPy数组,而不需要进行中间复制操作。这意味着它可以直接在原始内存缓冲区上创建数组视图,从而提高效率。 -
场景:适用于处理二进制数据或从文件中直接读取数据的场合。例如,从一个文件读取一个大型的二进制数组时,使用
frombuffer
可以避免不必要的数据复制,提高程序的效率。
import numpy as np # 假设buf是从文件中读取的二进制数据
buf = b'\x01\x02\x03\x04'
arr = np.frombuffer(buf, dtype=np.uint8)
numpy.fromiter
-
用途:
numpy.fromiter
是从任意可迭代对象(如迭代器、生成器、列表等)创建一个新的一维NumPy数组。与asarray
相比,它允许从迭代过程中动态生成的数据创建数组,同时可以指定数组的数据类型。 -
场景:当你有一个懒加载的或无法一次性加载到内存的数据生成器时,使用
fromiter
可以有效地将这些数据转换为NumPy数组。这对于处理大数据集或者只能按需生成数据的情况特别有用。
import numpy as np # 从迭代器创建数组
iterable = (x*x for x in range(5))
arr = np.fromiter(iterable, dtype=np.float)
总结
- 使用
asarray
来确保你的对象是一个NumPy数组,尤其是在不需要复制已经是NumPy数组的数据时。 frombuffer
非常适合于直接从二进制数据或文件中高效加载大型数组,因为它避免了中间的复制步骤。fromiter
适用于从迭代器或生成器等可迭代对象创建数组,特别是当数据是动态生成且数据量可能很大时。
每种方法根据你的具体需求和数据来源的不同,都有其独特的适用场景。