特征值与特征向量的意义

上半年研究生复试面试问的印象最深刻的题目就是:请根据自己的理解解释一下特征值与特征向量。

那种无从下嘴的感觉至今记忆犹新。

我们大学学线性代数、现代控制理论以及线性系统时都会学到特征值与特征向量,而且也仅限于会做题而已,却根本不知道他们是怎么来的。本文就深度梳理一下特征值与特征向量及其几何意义。


1.特征值与特征向量

我们知道,矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值

实际上,上述的一段话既讲了矩阵变换特征值及特征向量的几何意义(图形变换)也讲了其物理含义。物理的含义就是运动的图景:特征向量在一个矩阵的作用下作伸缩运动,伸缩的幅度由特征值确定。特征值大于1,所有属于此特征值的特征向量身形暴长;特征值大于0小于1,特征向量身形猛缩;特征值小于0,特征向量缩过了界,反方向到0点那边去了。

我们来看个例子:
M = ( 3 0 0 1 ) M=\left( \begin{array}{lcr} 3 & 0 \\ 0 & 1 \\ \end{array} \right) M=(3001)
它其实对应的线性变换是下面的形式:
在这里插入图片描述
因为这个矩阵M 乘以一个向量(x,y)的结果是:
( 3 0 0 1 ) ( x y ) = ( 3 x y ) \left( \begin{array}{lcr} 3 & 0 \\ 0 & 1 \\ \end{array} \right)\left( \begin{array}{lcr} x \\ y \\ \end{array} \right)=\left( \begin{array}{lcr} 3x \\ y \\ \end{array} \right) (3001)(xy)=(3xy)

上面的矩阵是对称的, 所以这个变换是一个对x, y轴的方向一个拉伸变换(每一个对角线上的元素将会对一个维度进行拉伸变换,当值>1时, 是拉长, 当值<1时时缩短),当矩阵不是对称的时候, 假如说矩阵是下面的样子:

M = ( 1 1 0 1 ) M=\left( \begin{array}{lcr} 1 & 1 \\ 0 & 1 \\ \end{array} \right) M=(1011)

它所描述的变换是下面的样子:
在这里插入图片描述
这其实是在平面上对一个轴进行的拉伸变换(如蓝色的箭头所示) , 在图中, 蓝色的箭头是一个最主要的变化方向(变化方向可能有不止一个)。如果我们想要描述好一个变换, 那我们就描述好这个变换主要的变化方向就好了。

2.特征值分解

设 A 是n阶方阵,如果存在数λ和非零n维列向量 x,使得 A α = λ α Aα=λα Aα=λα 成立,则称 λ 是矩阵A的一个特征值(characteristic value),而α是矩阵A对应于特征值λ的特征向量(Eigenvector)。

特征值分解是将一个矩阵分解成下面的形式:
A = Q Σ Q T A=QΣQ^{T} A=QΣQT
其中Q是这个矩阵A的特征向量组成的矩阵, Σ是一个对角阵, 每一个对角线上的元素就是一个特征值。

分解得到的Σ矩阵是一个对角阵, 里面的特征值是由大到小排列的, 这些特征值所对应的特征向量就是描述这个矩阵变化方向(从主要的变化到次要的变化排列)。也就是说矩阵A的信息可以由其特征值和特征向量表示。

总结一下, 特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要, 而特征向量表示这个特征是什么。不过, 特征值分解也有很多的局限, 比如说变换的矩阵必须是方阵。如果A不是方阵,即行和列不相同时,就不能用这种方法对矩阵进行分解,由此引入奇异值分解(SVD)的概念。
关于奇异值分解(SVD)相关知识,可参考博客:
https://blog.csdn.net/didi_ya/article/details/108895122

最后,强烈推荐大家看一下B站视频:线性代数的本质
真的,特别有帮助!

  • 53
    点赞
  • 193
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: 对称正定矩阵可以进行特征值分解,得到的特征向量特征值是: 1. 特征向量:对称正定矩阵的特征向量是指在矩阵进行线性变换后,仍然在原来的方向上的非零向量。特征向量特征值分解中扮演着非常重要的角色,它们构成了矩阵的特征向量空间。 2. 特征值:对称正定矩阵的特征值是指在特征向量进行线性变换时,每个特征向量所对应的比例因子。特征值是一个实数,它可以为正、零或负。在特征值分解中,特征值特征向量是一一对应的。 通常我们会将特征向量按照对应的特征值大小降序排列,这样可以得到一个按照重要性排序的特征向量矩阵,这个矩阵可以用来进行降维、数据压缩和数据可视化等操作。 ### 回答2: 对称正定矩阵的特征值特征向量在其分解过程中都能得到。 对称正定矩阵能够进行特征值分解,即将其分解为特征值特征向量的乘积形式。特征值是一个实数,特征向量则是一个非零向量。特征向量具有一些重要的性质,例如不变性和正交性。 在特征值分解中,我们通过求解矩阵的特征方程来得到特征值。特征方程为 det(A-λI)=0,其中A是对称正定矩阵,λ是特征值,I是单位矩阵。解特征方程可以得到对称正定矩阵的n个特征值特征值代表了矩阵在特定方向上的缩放因子。 而特征向量则是在满足特征方程的特征值下,通过解线性方程组(A-λI)x=0得到的非零解向量。一个对称正定矩阵有n个线性无关的特征向量,可以组成一个正交矩阵,使得A可以表示为特征值特征向量的乘积形式。 总结起来,对称正定矩阵的特征值特征向量都是在其分解过程中得到的。特征值是通过求解矩阵的特征方程得到的,代表了矩阵在特定方向上的缩放因子;而特征向量是通过解特征值所满足的线性方程组得到的,代表了矩阵在对应特征值方向上的特殊几何性质。 ### 回答3: 对称正定矩阵的特征值特征向量的性质如下: 特征值是一个实数λ,表示矩阵在特征向量上的伸缩因子。 特征向量是一个非零向量v,表示矩阵在这个方向上的伸缩。 对称正定矩阵是指矩阵A满足A的转置等于自身,且对于所有非零向量x都有x^T * A * x > 0。 对称正定矩阵可以进行特征值分解,即将矩阵A分解为A = Q * Λ * Q^T,其中Q为正交矩阵,Λ为对角矩阵,对角线上的元素为矩阵A的特征值特征向量可以由特征值和矩阵A求得,即对于每一个特征值λ,解方程(A - λI) * v = 0,其中I为单位矩阵,v为对应的特征向量特征向量可以通过特征值归一化得到。 因此,对称正定矩阵分解出来的特征值特征向量分别对应矩阵A的特征值特征向量特征向量可以由特征值求得。特征值特征向量对于分析和描述矩阵A的性质和变换具有重要意义特征值表示变换的伸缩因子,而特征向量表示变换的方向。特征值特征向量的分解使得对称正定矩阵的分析和应用变得更加方便和简洁。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wendy_ya

您的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值