利用子集构造法实现NFA到DFA的转换

本文介绍了如何使用子集构造法将非确定有限状态自动机(NFA)转换为确定有限状态自动机(DFA)。详细阐述了算法步骤,并通过一个实例展示了NFA的邻接表表示以及DFA的转换过程。程序实现了从文件读取NFA,转换并输出DFA的功能,包括关键函数的解释和代码清单。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 概述

NFA非有穷自动机,即当前状态识别某个转换条件后到达的后继状态不唯一,这种自动机不便机械实现,而DFA是确定有限状态的自动机,它的状态转换的条件是确定的,且状态数目往往少于NFA,所以DFA能够比较方便的机械实现且识别能力方面也和NFA相当。本次实验采用子集构造法来实现不带空弧的由NFADFA的转换。

 

子集构造法的算法如下:

NFAM=(K,Σ,f,S0,Z),则构造相应的DFA  M=(Q,Σ,f,I0,F)
①取I0=S0
②对于状态集Q中任一尚未标记的状态qi={Si1,Si2,,Sim},SikK,做:
 (1) 标记qi
 (2) 对于每个a∈Σ,置
     T=f({Si1,Si2,,Sim},a)
     qj=εCLOSURE(T)
 (3) qj不在Q中,则将qj作为一个未加标记的状态添加到Q中,且把状态转移f(qi,a)=qj添加到M′。
③重复进行步骤②,直到Q中不再含有未标记的状态为止。对于由此构造的Q,我们把那些至少含有一个Z中的元素的qi作为M′的终态。

 

对于如图所示的NFA其在文件中保存的信息如下

 

转成DFA之后的形式为

 

重命名为

  • 程序整体思路

首先将文件中所给的NFA输入读入程序,在读入过程中将其以图的邻接表的形式保存,其中将状态转移条件记为该边的权值,每种状态记为图的结点,该状态识别状态转移条件(权值)之后到达的状态为该结点的邻接点。

 

对于上面的例子,将其读入程序中后该图在程序中的逻辑存储结构(图的邻接表)如图所示,其中邻接点中第一个数字表示权值,第二个数字表示所连的结点。

将图读入程序中后,再使用子集构造算法来完成由NFADFA的转化。

 

对于每种状态,其数据结构定义为

1 typedef struct state
2 {
3     set<int> Set;
4     char name;
5 }state;
View Code

其中set里存放该状态识别某个条件后所能到达的状态集合的下标,name里存该状态重命名后的名字。

 

这些状态保存在状态数组States[max]中,状态数组States[max]数据结构定义为

1 state S
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值