-
概述
NFA非有穷自动机,即当前状态识别某个转换条件后到达的后继状态不唯一,这种自动机不便机械实现,而DFA是确定有限状态的自动机,它的状态转换的条件是确定的,且状态数目往往少于NFA,所以DFA能够比较方便的机械实现且识别能力方面也和NFA相当。本次实验采用子集构造法来实现不带空弧的由NFA到DFA的转换。
子集构造法的算法如下:
设NFA为M=(K,Σ,f,S0,Z),则构造相应的DFA M′=(Q,Σ,f′,I0,F)
①取I0=S0;
②对于状态集Q中任一尚未标记的状态qi={Si1,Si2,…,Sim},Sik∈K,做:
(1) 标记qi;
(2) 对于每个a∈Σ,置
T=f({Si1,Si2,…,Sim},a)
qj=εCLOSURE(T)
(3) 若qj不在Q中,则将qj作为一个未加标记的状态添加到Q中,且把状态转移f′(qi,a)=qj添加到M′。
③重复进行步骤②,直到Q中不再含有未标记的状态为止。对于由此构造的Q,我们把那些至少含有一个Z中的元素的qi作为M′的终态。
对于如图所示的NFA其在文件中保存的信息如下
转成DFA之后的形式为
重命名为
-
程序整体思路
首先将文件中所给的NFA输入读入程序,在读入过程中将其以图的邻接表的形式保存,其中将状态转移条件记为该边的权值,每种状态记为图的结点,该状态识别状态转移条件(权值)之后到达的状态为该结点的邻接点。
对于上面的例子,将其读入程序中后该图在程序中的逻辑存储结构(图的邻接表)如图所示,其中邻接点中第一个数字表示权值,第二个数字表示所连的结点。
将图读入程序中后,再使用子集构造算法来完成由NFA到DFA的转化。
对于每种状态,其数据结构定义为


1 typedef struct state 2 { 3 set<int> Set; 4 char name; 5 }state;
其中set里存放该状态识别某个条件后所能到达的状态集合的下标,name里存该状态重命名后的名字。
这些状态保存在状态数组States[max]中,状态数组States[max]数据结构定义为


1 state S