LeetCode(2)

4. Median of Two Sorted Arrays

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:

nums1 = [1, 3]
nums2 = [2]

The median is 2.0

Example 2:

nums1 = [1, 2]
nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5

答案:有一个地方 走了小弯路,人家给出来的数组已经 sort 过了,然后不可以用set 这种东西,虽然可以自动排序(tree set), 但问题是 也会 去重 ,所以这个不可以有。 一种解法用的二叉树, 全部从中间开始找,如果 数组a的中位数比b 的中位数小,那代表我要对a 的中位数以上的1/4 (也就是3/4的地方找) ,相应b 的话也是这样,我要对b的中位数一下的1/4 找(也就是 1/4 位数的地方找)。

The key point of this problem is to ignore half part of A and B each step recursively by comparing the median of remaining A and B:

if (aMid < bMid) Keep [aRight + bLeft]    
else Keep [bRight + aLeft]

As the following: time=O(log(m + n))

public double findMedianSortedArrays(int[] A, int[] B) {
	    int m = A.length, n = B.length;
	    int l = (m + n + 1) / 2;
	    int r = (m + n + 2) / 2;
	    return (getkth(A, 0, B, 0, l) + getkth(A, 0, B, 0, r)) / 2.0;
	}

public double getkth(int[] A, int aStart, int[] B, int bStart, int k) {
	if (aStart > A.length - 1) return B[bStart + k - 1];            
	if (bStart > B.length - 1) return A[aStart + k - 1];                
	if (k == 1) return Math.min(A[aStart], B[bStart]);
	
	int aMid = Integer.MAX_VALUE, bMid = Integer.MAX_VALUE;
	if (aStart + k/2 - 1 < A.length) aMid = A[aStart + k/2 - 1]; 
	if (bStart + k/2 - 1 < B.length) bMid = B[bStart + k/2 - 1];        
	
	if (aMid < bMid) 
	    return getkth(A, aStart + k/2, B, bStart,       k - k/2);// Check: aRight + bLeft 
	else 
	    return getkth(A, aStart,       B, bStart + k/2, k - k/2);// Check: bRight + aLeft
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值