Claude 3.5 升级:论文数据分析就用它了!

我是娜姐 @迪娜学姐 ,一个SCI医学期刊编辑,探索用AI工具提效论文写作和发表。

图片

Claude最近刚更新了它的3.5 Sonnet和Haiku版本。新功能包括编码能力和视觉推理能力的提升。

图片

在这之前,Claude的3.5版本只发布了Sonnet,对于科研党来说,它最亮眼的是200k的超长上下文能力。

有学员反馈在阅读文献、预审稿等任务中,经常会遇到文档超出长度被截断的提醒,这时候,我会建议他们用Claude的3.5 Sonnet,不仅是长上下文,该模型的分析推理能力也是杠杠的。  

这一次更新的3.5 Sonnet视觉推理能力提升到70.4%,超过了GPT 4o和Gemini 1.5 pro。我们来测试一下它的图片分析和解读功能:
 

我按顺序上传了一篇博士论文的表格和图片,请它帮我解读,撰写图表说明文字:

表1是一张反映研究人群特征的表格:

图片

除了罗列数据,还对有显著性差异的指标进行了总结。

          

接下来分析图1“患者组与健康对照组的LC-MS 分析”:

图片

    

可以看出,针对色谱图呈现的数据特征进行了准确解读。

          

PCA得分图解析:

图片

除了统计学描述,最后的总结性结论“”NASH患者存在显著的代谢重编程现象,为后续深入研究NASH发病机制和寻找潜在生物标志物提供了可靠的数据基础。“都是可以直接写进论文了。

          

KEGG “代谢物通路分析”:    

图片

          

肠道菌群Alpha多样性的分析:

图片

除了描述数据特征,每张图表能够结合文章的研究目的进行总结归纳。这都可以直接拿来写作论文的Results结果部分了。    

最新版Claude 3.5的视觉推理能力确实不错,用来帮我们读图、分析图表完全够用了。


至于各大媒体宣传的类似Agent的自动操作鼠标的computer use功能,当前还只供开发者接入api使用。普通用户还要等待一段时间。

我期待的computer use功能使用场景是这样的:      

打开Claude的界面,上传一份原始表格数据,它迅速读取数据,自动识别出数据中的关键特征。

很快,Claude就生成了各种统计图表——柱状图、饼图、折线图……清晰展示了数据之间的关系与趋势。   

接下来,Claude自动生成了图表说明文字,详细解释了每张图表的含义和统计学发现。你一下子对这批数据有了更直观深入的理解。

整个过程中,我只需要端杯咖啡,坐在电脑前,看着鼠标不停挪动,时而闪烁的图表和数字在屏幕上快速变换。

最终我就能从一张庞杂的原始数据表格,得到一组准确反映数据特征的绘制精良的统计图表,还附带图表描述文字。    
 

随着向computer use这样的Agent功能的发展,AI这个得力助手,可以更加无缝地融入科研工作流程,让我们的将更多精力投入到创造性思考和研究设计中。期待这一天的到来。  

### 关于Cursor Claude High-Fidelity Q&A Template的信息 Cursor 的高保真问答模板(High-Fidelity Q&A Template)旨在提供一种结构化的方式,帮助用户高效利用 Claude 模型的强大功能来解决复杂问题。这种模板设计的核心目标是通过优化提示工程和交互方式,最大化模型的表现力和准确性。 #### 高保真问答模板的特点 1. **混合推理能力增强**: 使用 Cursor 和 Claude-3.7-Sonnet 结合时,能够处理复杂的多步逻辑推理任务[^1]。这使得开发者可以在单一界面中完成从数据分析到代码实现的全流程工作。 2. **长上下文支持**: 支持超长输入输出的能力让高保真问答模板非常适合需要大量背景信息的任务,比如法律文档分析、技术报告撰写或科学论文总结。 3. **定制化选项**: 尽管部分参数无法直接调整,但通过精心设计的提示语句以及灵活的选择机制,用户仍然可以针对具体需求微调模型行为。 4. **性能与成本平衡**: 基于 Claude 3.5 Haiku 的特性,该模板还注重效率与经济性的结合,在保持高性能的同时降低运行成本[^2]。 5. **社区认可度高**: 此外,由于其卓越的功能表现,这一组合得到了业界专家的高度评价,例如 Karpathy 对 Cursor+Claude-3.5-Sonnet 组合的认可进一步证明了它的价值[^3]。 #### 如何应用高保真问答模板? 为了充分发挥 Cursor 和 Claude 模型的优势,建议按照以下方法构建提问: - 明确指定所需信息范围及格式要求; - 提供足够的上下文数据以便模型理解问题本质; - 利用条件分支引导对话走向特定解决方案路径; 以下是基于 Python 实现的一个简单示例程序展示如何集成这些组件: ```python import cursor_ai as ca def generate_response(prompt, model="claude-3.7-sonnet"): client = ca.Client() response = client.complete( prompt=prompt, max_tokens=500, stop_sequences=["\n\n"], temperature=0.7, top_p=None, presence_penalty=-0.2, frequency_penalty=0.0, model=model ) return response['completion'] if __name__ == "__main__": user_input = input("请输入您的问题:") answer = generate_response(user_input) print(f"生成的回答如下:\n{answer}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值