刷屏的17岁高中生神级prompt:加强后的Claude 3.5来帮我们进行实验方案设计,效果很惊艳!

我是娜姐 @迪娜学姐 ,一个SCI医学期刊编辑,探索用AI工具提效论文写作和发表。

图片

这两天17岁高中生@涂津豪的thinking claude提示词火出圈了,这段提示词总计1388个单词,长这样:

图片

没显示完全,完整版可以去作者的github获取,或者加文末娜姐微信领取:https://github.com/richards199999/Thinking-Claude    

它有什么神奇之处呢?

在你跟Claude对话之前,把这个1000多字的prompt先发给它,立马让它智商提升10倍。它能模仿人类的慢思考过程,在回答你的任何问题之前,都会将问题先拆解分析一番,再来解答。这个thinking的过程,也会展示给你。

类似o1的思维链,但是比o1更厉害。          

那在学术研究中,哪些场景能用上呢?一定是适合复杂、深度思考的场景,要不然有点大材小用,也体现不出它的威力。

我问了Claude 3.5,这个thinking protocol更适合哪些学术场景:    

图片

 关于研究设计,最近好几个学员问我该如何进行实验设计:

看了别人的一篇文章,很有启发,我也想模仿这个思路设计,该如何规划实验方案?

我先把感兴趣的论文标题摘要发给Claude,让它先分析一下,准备回答我的问题:    

图片

          

Claude先进行了一番思考,以下是它的思考过程:    

图片

   


我先问了它一个相关概念:    

图片

接下来是详细解释:    

图片

这个概念解释深入浅出,特别是举例部分。     

接下来,我想让它帮我构思选题,它的思考过程:    

图片

          

分析的还挺对,选题要考虑临床价值、技术可行性、创新性和自身的资源匹配。以下是它分析后给出的选题建议:

图片

图片

          

我对其中的一个选题“个性化手术方案的力学评估”感兴趣,再追问它具体的实验方案:    

图片

          

基于以上思考,它给出了建议的实验方案:    

图片

    

图片

图片

图片


整体的框架有了:样本收集-模型建立-手术方案设计-力学分析-评估指标-验证方法-数据分析等。
          

之前ChatGPT也能做到这一步。既然它主动问我,具体的实验条件设置,那我也很想知道。继续问:

图片


 

然后它就开始给我提供详细的采集参数和实验设计方案了,相当详细,这一步ChatGPT还真做不到:

    

图片

       

图片

图片

图片

图片


这么详细的方案,真的是protocol级别!基本可以照着操作了。各位快去试试吧!(注意,一定要是3.5版本,之前的Claude 3没有这个效果,Opus也不行)

        

番外:

让Thinking Claude写一个有关学术圈“有点离奇但又深刻反映现实”的小说,怎么样?

我没有给定主题,让Claude自由发挥的。

然后它提出了一个关于影响因子的假设:如果把学术圈的"引用指数"和"影响因子"这种量化评价体系推向极致,会怎样?

基于这个假设,它假定在未来的某个时刻,科研人员的学术地位完全由AI系统基于各种量化指标自动评定,并能够预估某人30年后的学术影响力。。。

Enjoy:    

图片

图片

    

   故事第一部分:      

图片

第二部分:    

图片

      

第三部分:   

图片

  第四部分:           

图片

          

结尾部分:    

图片

图片


整个故事编排很符合逻辑,起承转合,扣人心弦。看看这文风,非常自然,“近乎怜悯的语气” “礼貌地点头,但内心毫无波动” “深吸一口气,点击了接受” “望着窗外的晨光,嘴角露出一丝苦笑”。。    

谁说AI写的文字有机器味了,我要是不说,完全看不出来是AI写的。

如果觉得有用,欢迎在看、转发和点赞,一键三连!娜姐继续输出有用的AI辅助科研写作、绘图相关技巧和知识。   

### 使用Claude3.5模型与Copilot集成的方法 为了在GitHub Copilot环境中利用Claude3.5模型,需注意当前官方并没有直接支持特定版本如Claude3.5的说明。然而,可以考虑间接方式来达成目标。通常情况下,要使AI编码助手能够访问外部LLM(大语言模型),开发者可能需要依赖API接口或是自定义扩展[^1]。 对于想要融合先进特性如多轮对话能力、工具调用能力和代码执行能力等功能到现有开发辅助工具中的情况,可以从研究已有的开源项目入手,比如基于类似架构设计的应用实例——T3、GLM系列下的ChatGLM3 LLMs提供了详尽的技术细节和实践指南,这或许能带来一些启发性的思路[^3]。 另外,在实际操作层面,如果计划让Copilot使用指定的语言模型服务,则往往涉及到配置环境变量、编写适配器脚本以及调整IDE设置等工作。具体步骤会依据所选平台的具体要求而变化。值得注意的是,确保遵循各软件产品的最新文档指导来进行相应修改是非常重要的。 ```python import os from some_api_client import APIClient # 假设这是用于连接至 Claude API 的客户端库 api_key = os.getenv('CLAUDE_API_KEY') client = APIClient(api_key) def get_model_response(prompt_text): response = client.send_prompt(prompt_text=prompt_text, model_version="claude-3.5") return response['content'] ``` 此段Python代码展示了如何创建一个简单的函数`get_model_response()`,它接受一段文本作为输入并返回由指定版本的大规模预训练语言模型生成的回答。这里假设存在名为`some_api_client`的第三方库可以助简化向Claude发送请求的过程;实际上应当替换为真实的SDK或HTTP请求逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值