BD的笔记

昨日已成往事,当下才属未来

Machine Learning: Clustering and Similarity: Retrieving Documents

Retrieving documents of interset 问题描述: 根据你目前所阅读,感兴趣的文章,找到相似的文章。 所需解决难题: 如何度量相似性? 如何去搜索文章? Word count representation for measuring similarity 这里有一段...

2016-07-28 10:08:19

阅读数 423

评论数 0

Machine Learning Foundations: A Case Study Approach-Regression-Assignment: Predicting House Prices

Predicting house pricesIn this module, we focused on using regression to predict a continuous value (house prices) from features of the house (square...

2016-06-26 21:07:43

阅读数 2636

评论数 0

Coursera机器学习-第十周-Large Scale Machine Learning

Gradient Descent with Large DatasetsLearning With Large Datasets 我们已经知道,得到一个高效的机器学习系统的最好的方式之一是,用一个低偏差(low bias)的学习算法,然后用很多数据来训练它。 下面是一个区分混淆词组的例子: ...

2016-06-23 15:47:21

阅读数 4015

评论数 0

Machine Learning-Recommender Systems(推荐系统)

Predicting Movie Ratings Problem Formulation 推荐系统问题就是,给定这些数据,给定这些 r(i,j)r(i, j) 和y(i,j) y(i, j) 数值,然后浏览全部数据,关注所有没有电影评分的地方,并试图预测这些带问号的地方应该是什么数值。 Con...

2016-06-21 15:25:57

阅读数 1845

评论数 0

Coursera机器学习-第九周-Anomaly Detection

Density EstimationProblem Motivation 所谓异常检测就是发现与大部分对象不同的对象,其实就是发现离群点,异常检测有时也称偏差检测,异常对象是相对罕见的。 应用:欺诈检测:主要通过检测异常行为来检测是否为盗刷他人信用卡。 入侵检测:检测入侵计算机系统的行为 ...

2016-06-18 13:57:12

阅读数 5219

评论数 1

Coursera机器学习-第七周-Support Vector Machine

Large Margin Classification 支持向量机(Support vector machine)通常用在机器学习 (Machine learning)。是一种监督式学习 (Supervised Learning)的方法,主要用在统计分类 (Classification)问题和回归...

2016-06-13 10:24:40

阅读数 5385

评论数 1

Coursera机器学习-第八周-Unsupervised Learning(K-Means)

Clustering Unsuperivised Learning:Intruduction 典型的Supervised Learning 有一组附标记(y(i)y^{(i)})的训练数据集, 我们想要找出决策边界,藉此区分开正(positive)或负(negative)标记数据。 ...

2016-06-12 09:30:10

阅读数 3346

评论数 0

Machine Leanring-Principal Component Analysis(PCA)

Principal Component Analysis 方差:数据与平均数之差平方和的平均数。更多详见 Principal Component Analysis(PCA)是最常用的线性降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中表示,并期望在所投影的维度上数据的方差最大...

2016-06-12 09:01:17

阅读数 2733

评论数 1

Coursera机器学习-第六周-Advice for Applying Machine Learning

Evaluating a Learning Algorithm Desciding What to Try Next Evaluating a Hypothesis Model Selection and Train/Validation/Test sets Bi...

2016-06-01 07:58:34

阅读数 3070

评论数 0

Coursera机器学习-第五周-Neural Network BackPropagation

Cost Function and BackpropagationCost Function 假设有样本m个。x(m)x^{(m)}表示第m个样本输入,y(m)y^{(m)}表示第m个样本输出,LL表示网络的层数,sls_l表示在ll层下,神经但愿的总个数(不包括偏置bias units),SL...

2016-05-22 22:17:14

阅读数 6059

评论数 0

Coursera机器学习-第四周-Neural Network ForwardPropagation

Neural NetWork的由来先考虑一个非线性分类,当特征数很少时,逻辑回归就可以完成了,但是当特征数变大时,高阶项将呈指数性增长,复杂度可想而知。如下图:对房屋进行高低档的分类,当特征值只有x1,x2,x3x_1,x_2,x_3时,我们可以对它进行处理,分类。但是当特征数增长为x1,x2.....

2016-05-14 10:24:30

阅读数 4663

评论数 0

机器学习推荐资料

C++计算机视觉CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统。 通用机器学习MLPackDLibecoggs...

2016-05-11 08:53:22

阅读数 1239

评论数 0

Coursera机器学习-第三周-逻辑回归Logistic Regression

Classification and Representation 1. Classification Linear Regression (线性回归)考虑的是连续值([0,1]之间的数)的问题,而Logistic Regression(逻辑回归)考虑的是离散值(例如只能取0或1而不能取0到1...

2016-05-10 10:41:40

阅读数 3324

评论数 0

Coursera公开课笔记: 斯坦福大学机器学习第七课“正则化(Regularization)”

斯坦福大学机器学习第七课”正则化“学习笔记,本次课程主要包括4部分: 1)  The Problem of Overfitting(过拟合问题) 2)  Cost Function(成本函数) 3)  Regularized Linear Regression(线性回归的正则化) 4)  ...

2016-03-05 16:57:03

阅读数 741

评论数 0

机器学习--线性回归R语言

回归分析就是利用样本,产生拟合方程,从而进行预测。简而言之,就是你用你手头上的数据进行模型的训练,然后用你得到的模型对于新数据进行预测。一元线性回归:例子:y<- c(61,57,58,40,90,35,68)#weight x<-c(170,168,175,153,185,135,1...

2016-01-20 16:23:05

阅读数 9503

评论数 0

NMF非负矩阵分解以及更新迭代公式

NMF:非负矩阵因式分解。 NMF一直被认为是对多维数据分解的一个很有效的方法,包括在聚类和推荐系统中应用等。 NMF矩阵算法介绍: 给定一个非负矩阵V,我们可以找到2个非负分解因子矩阵W,H.其中,W称为权重矩阵,H称为特征矩阵。公式如下: 当n维数据向量集放置在n*m的矩阵V中,其中m是数据...

2016-01-16 17:26:40

阅读数 8225

评论数 6

提示
确定要删除当前文章?
取消 删除