矩阵求导(二)

矩阵求导术(下)

转自:https://zhuanlan.zhihu.com/p/24863977

4 个月前
本文承接上篇 https://zhuanlan.zhihu.com/p/24709748,来讲矩阵对矩阵的求导术。使用小写字母x表示标量,粗体小写字母 x 表示列向量,大写字母X表示矩阵。矩阵对矩阵的求导采用了向量化的思路,常应用于二阶方法求解优化问题。

首先来琢磨一下定义。矩阵对矩阵的导数,需要什么样的定义?第一,矩阵 F(p×q) 对矩阵 X(m×n) 的导数应包含所有 mnpq 个偏导数 FklXij ,从而不损失信息;第二,导数与微分有简明的联系,因为在计算导数和应用中需要这个联系;第三,导数有简明的从整体出发的算法。我们先定义向量 f(p×1) 对向量 x(m×1) 的导数

fx:=f1x1f1x2f1xmf2x1f2x2f2xmfpx1fpx2fpxm(m×p)
,有 df=fxTdx ;再定义矩阵的(按列优先)向量化
vec(X):=[X11,,Xm1,X12,,Xm2,,X1n,,Xmn]T(mn×1)
,并定义矩阵F对矩阵X的导数 FX:=vec(F)vec(X)(mn×pq) 。导数与微分有联系 vec(dF)=FXTvec(dX) 。几点说明如下:

按此定义,标量f对矩阵 X(m×n) 的导数 fX 是mn×1向量,与上篇的定义不兼容,不过二者容易相互转换。为避免混淆,用记号 Xf 表示上篇定义的m×n矩阵,则有 fX=vec(Xf) 。虽然本篇的技术可以用于标量对矩阵求导这种特殊情况,但使用上篇中的技术更方便。读者可以通过上篇中的算例试验两种方法的等价转换。
标量对矩阵的二阶导数,又称Hessian矩阵,定义为 2Xf:=2fX2=XfX(mn×mn) ,是对称矩阵。对 fXXf 求导都可以得到Hessian矩阵,但从矩阵 Xf 出发更方便。

FX=vec(F)X=Fvec(X)=vec(F)vec(X)
,求导时矩阵被向量化,弊端是这在一定程度破坏了矩阵的结构,会导致结果变得形式复杂;好处是多元微积分中关于梯度、Hessian矩阵的结论可以沿用过来,只需将矩阵向量化。例如优化问题中,牛顿法的更新 ΔX ,满足 vec(ΔX)=(2Xf)1vec(Xf)
在资料中,矩阵对矩阵的导数还有其它定义,比如 FX:=[FklX](mp×nq) ,它能兼容上篇中的标量对矩阵导数的定义,但微分与导数的联系( dF 等于 FX 中每个m×n子块分别与 dX 做内积)不够简明,不便于计算和应用。

然后来建立运算法则。仍然要利用导数与微分的联系 vec(dF)=FXTvec(dX) ,求微分的方法与上篇相同,而从微分得到导数需要一些向量化的技巧:

线性: vec(A+B)=vec(A)+vec(B)
矩阵乘法: vec(AXB)=(BTA)vec(X) ,其中 表示Kronecker积, A(m×n) B(p×q) 的Kronecker积是 AB:=[AijB](mp×nq) 。此式证明见张贤达《矩阵分析与应用》第107-108页。
转置: vec(AT)=Kmnvec(A) A m×n矩阵,其中 Kmn(mn×mn) 是交换矩阵(commutation matrix)。
逐元素乘法: vec(AX)=diag(A)vec(X) ,其中 diag(A)(mn×mn) 是用 A 的元素(按列优先)排成的对角阵。

观察一下可以断言,若矩阵函数F是矩阵 X 经加减乘法、行列式、逆、逐元素函数等运算构成,则使用相应的运算法则对F求微分,再做向量化并使用技巧将其它项交换至 vec(dX) 左侧,即能得到导数。

再谈一谈复合:假设已求得 FY ,而Y是X的函数,如何求 FX 呢?从导数与微分的联系入手, vec(dF)=FYTvec(dY)=FYTYXTvec(dX) ,可以推出链式法则 FX=YXFY

和标量对矩阵的导数相比,矩阵对矩阵的导数形式更加复杂,从不同角度出发常会得到形式不同的结果。有一些Kronecker积和交换矩阵相关的恒等式,可用来做等价变形:

(AB)T=ATBTvec(abT)=ba(AB)(CD)=(AC)(BD)
。可以对 F=DTBTXAC 求导来证明,一方面,直接求导得到 FX=(AC)(BD) ;另一方面,引入 Y=BTXA ,有 FY=CD,YX=AB ,用链式法则得到 FX=(AB)(CD)
Kmn=KTnm,KmnKnm=I
KpmABKnq=BA A m×n矩阵, B p×q矩阵。可以对 AXBT 做向量化来证明,一方面, vec(AXBT)=(BA)vec(X) ;另一方面,
vec(AXBT)=Kpmvec(BXTAT)=(KpmAB)vec(XT)=(KpmABKnq)vec(X)

接下来演示一些算例。

例1: F=AX X m×n矩阵,求 FX

解:先求微分: dF=AdX ,再做向量化,使用矩阵乘法的技巧,注意在 dX 右侧添加单位阵: vec(dF)=vec(AdX)=(InA)vec(dX) ,对照导数与微分的关系得到 FX=InAT

例2: f=log|X| X n×n矩阵,求 Xf 2Xf

解:使用上篇中的技术可求得 Xf=X1T 。为求 2Xf ,先求微分: dXf=(X1dXX1)T ,再做向量化,使用转置和矩阵乘法的技巧 vec(dXf)=Knnvec(X1dXX1)=KnnX1TX1vec(dX) ,对照导数与微分的关系得到 2Xf=KnnX1TX1 。注意 2Xf 是对称矩阵。在 X 是对称矩阵时,可简化为2Xf=X1X1

例3: F=Aexp(XB) A l×m X m×n B n×p矩阵, exp() 为逐元素函数,求 FX

解:先求微分: dF=A(exp(XB)(dXB)) ,再做向量化,使用矩阵乘法的技巧: vec(dF)=(IpA)vec(exp(XB)(dXB)) ,再用逐元素乘法的技巧: vec(dF)=(IpA)diag(exp(XB))vec(dXB) ,再用矩阵乘法的技巧: vec(dF)=(IpA)diag(exp(XB))(BTIm)vec(dX) ,对照导数与微分的关系得到 FX=(BIm)diag(exp(XB))(IpAT)

最后做个小结。我们发展了从整体出发的矩阵求导的技术,导数与微分的联系是计算的枢纽,标量对矩阵的导数与微分的联系是 df=tr(TXfdX) ,先对f求微分,再使用迹技巧可求得导数;矩阵对矩阵的导数与微分的联系是 vec(dF)=FXTvec(dX) ,先对F求微分,再使用向量化的技巧可求得导数。

参考资料:

张贤达. 矩阵分析与应用. 清华大学出版社有限公司, 2004.
Fackler, Paul L. “Notes on matrix calculus.” North Carolina State University(2005).
Petersen, Kaare Brandt, and Michael Syskind Pedersen. “The matrix cookbook.” Technical
University of Denmark 7 (2008): 15.
HU, Pili. “Matrix Calculus: Derivation and Simple Application.” (2012).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值