- 看了个文章说根据PE和ROE就可以找出最有价值的股票进行投资
- 原理是pe越高排名越低,roe越高排名越高,具体需要查询下这两个描述的意义
- 首先要拿到所有的数据,当然通过爬虫来拉取,然后我选择对数据进行存储,选择了Mongdb,另外python使用了pyMongdb进行驱动链接。
- 拿到数据之后需要进行排序然后打印出前30的数据.话不多说上代码
import time
import pymongo as pymongo
import requests
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/80.0.3987.149 Safari/537.36 '
}
myclient = pymongo.MongoClient('mongodb://localhost:27017/')
mydb = myclient["gupiao"]
mycol = mydb["gu"]
def get_page(url, json=False):
"""
获取源码
"""
if json:
return requests.get(url=url, headers=headers).json()
return requests.get(url=url, headers=headers).text
def jquery_list(jquery, data_mode='[') -> dict:
reverse_mode = {'[': ']', '{': '}', '(': ')'}
tail_str = jquery[-5:][::-1]
return eval(jquery[jquery.index(data_mode): -tail_str.index(reverse_mode[data_mode])])
def main(end):
date = time.strftime('%Y-%m-%d', time.localtime())
for page in range(1, end):
url = 'http://65.push2.eastmoney.com/api/qt/clist/get?cb=jQuery1124020466762984478337' \
f'_1609556336027&pn={page}&pz=20&po=1&np=1&ut=bd1d9ddb04089700cf9c27f6f7426281&fltt=2&invt=2&fid=f3&' \
'fs=m:0+t:6,m:0+t:13,m:0+t:80,m:1+t:2,m:1+t:23&' \
'fields=f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,' \
f'f24,f25,f22,f11,f62,f128,f136,f115,f152,f37,f100,f102&_={int(time.time() * 1000)}'
content = get_page(url=url)
result = jquery_list(content, data_mode='{')
for i in result['data']['diff']:
f12, f14, f9, f37 = i['f12'], i['f14'], i['f9'], i['f37']
data = {"date": date, "stock_code": f12, "name": f14, 'PE': f9, 'ROE': f37}
x = mycol.insert_one(data)
print(data)
def orderForFinal():
mydoc = mycol.find()
print(mycol.count_documents({}))
x = mycol.count_documents({})
for i in range(x):
newvalues = {"$set": {"finalOrder": mydoc.__getitem__(i).get("PEORDER") + mydoc.__getitem__(i).get("ROEORDER")}}
mycol.update_one({"stock_code": mydoc.__getitem__(i).get("stock_code")}, newvalues)
def orderForPE():
mydoc = mycol.find().sort([("PE", 1), ("_id", 1)])
x = mycol.count_documents({})
for i in range(x):
newvalues = {"$set": {"PEORDER": i + 1}}
mycol.update_one({"stock_code": mydoc.__getitem__(i).get("stock_code")}, newvalues)
for x in mydoc:
print(x)
def orderForROE():
mydoc = mycol.find().sort([("ROE", -1), ("_id", 1)])
x = mycol.count_documents({})
for i in range(x):
newvalues = {"$set": {"ROEORDER": i + 1}}
mycol.update_one({"stock_code": mydoc.__getitem__(i).get("stock_code")}, newvalues)
for x in mydoc:
print(x)
def deleteNUllData():
myquery = {"PE": "-"}
mycol.delete_many(myquery)
def printData():
mydoc = mycol.find().sort([("finalOrder", 1)]).limit(30)
for x in mydoc:
print(x.get("name"))
if __name__ == '__main__':
printData()
- 先进行了拉取数据,根据页码进行。
- 由于有些是无效数据,先进行删除,以免影响后续排序
- 对pe,roe排序,并填入值,最后进行大排序,选取前30
- 后面问了朋友,自己分析得名单一个都没买,大写的尴尬。
- 不构成投资建议,投资需谨慎!!!!