Python根据pe和roe找出最佳股票

通过Python爬虫获取股票数据,利用PE(市盈率)和ROE(净资产收益率)指标进行投资价值分析。将PE值降序,ROE值升序排序,结合MongoDB存储数据,最终选出排名前30的股票。但实际投资结果并不理想,提醒投资需谨慎。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 看了个文章说根据PE和ROE就可以找出最有价值的股票进行投资
  2. 原理是pe越高排名越低,roe越高排名越高,具体需要查询下这两个描述的意义
  3. 首先要拿到所有的数据,当然通过爬虫来拉取,然后我选择对数据进行存储,选择了Mongdb,另外python使用了pyMongdb进行驱动链接。
  4. 拿到数据之后需要进行排序然后打印出前30的数据.话不多说上代码
import time

import pymongo as pymongo
import requests

# http://quote.eastmoney.com/center/gridlist.html#hs_a_board
headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) '
                  'Chrome/80.0.3987.149 Safari/537.36 '
}

myclient = pymongo.MongoClient('mongodb://localhost:27017/')
mydb = myclient["gupiao"]
mycol = mydb["gu"]


def get_page(url, json=False):
    """
    获取源码
    """
    if json:
        return requests.get(url=url, headers=headers).json()
    return requests.get(url=url, headers=headers).text


def jquery_list(jquery, data_mode='[') -> dict:
    reverse_mode = {'[': ']', '{': '}', '(': ')'}
    tail_str = jquery[-5:][::-1]
    return eval(jquery[jquery.index(data_mode): -tail_str.index(reverse_mode[data_mode])])


def main(end):
    date = time.strftime('%Y-%m-%d', time.localtime())
    for page in range(1, end):
        url = 'http://65.push2.eastmoney.com/api/qt/clist/get?cb=jQuery1124020466762984478337' \
              f'_1609556336027&pn={page}&pz=20&po=1&np=1&ut=bd1d9ddb04089700cf9c27f6f7426281&fltt=2&invt=2&fid=f3&' \
              'fs=m:0+t:6,m:0+t:13,m:0+t:80,m:1+t:2,m:1+t:23&' \
              'fields=f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,' \
              f'f24,f25,f22,f11,f62,f128,f136,f115,f152,f37,f100,f102&_={int(time.time() * 1000)}'
        content = get_page(url=url)
        result = jquery_list(content, data_mode='{')
        for i in result['data']['diff']:
            f12, f14, f9, f37 = i['f12'], i['f14'], i['f9'], i['f37']
            data = {"date": date, "stock_code": f12, "name": f14, 'PE': f9, 'ROE': f37}
            x = mycol.insert_one(data)
            print(data)


def orderForFinal():
    mydoc = mycol.find()
    print(mycol.count_documents({}))
    x = mycol.count_documents({})
    for i in range(x):
        newvalues = {"$set": {"finalOrder": mydoc.__getitem__(i).get("PEORDER") + mydoc.__getitem__(i).get("ROEORDER")}}
        mycol.update_one({"stock_code": mydoc.__getitem__(i).get("stock_code")}, newvalues)


def orderForPE():
    mydoc = mycol.find().sort([("PE", 1), ("_id", 1)])
    x = mycol.count_documents({})
    for i in range(x):
        newvalues = {"$set": {"PEORDER": i + 1}}
        mycol.update_one({"stock_code": mydoc.__getitem__(i).get("stock_code")}, newvalues)
    for x in mydoc:
        print(x)


def orderForROE():
    mydoc = mycol.find().sort([("ROE", -1), ("_id", 1)])
    x = mycol.count_documents({})
    for i in range(x):
        newvalues = {"$set": {"ROEORDER": i + 1}}
        mycol.update_one({"stock_code": mydoc.__getitem__(i).get("stock_code")}, newvalues)
    for x in mydoc:
        print(x)


def deleteNUllData():
    myquery = {"PE": "-"}
    mycol.delete_many(myquery)
    # mycol.update_many({},{'$unset':{'finalORDER':'1'}},)


def printData():
    # mydoc = mycol.find().
    # myquery = {"PE": {"$gt": 5}}
    mydoc = mycol.find().sort([("finalOrder", 1)]).limit(30)
    for x in mydoc:
        print(x.get("name"))


if __name__ == '__main__':
    # main(251)
    # deleteNUllData()
    # orderForPE()
    # orderForROE()
    # orderForFinal()
    printData()

  • 先进行了拉取数据,根据页码进行。
  • 由于有些是无效数据,先进行删除,以免影响后续排序
  • 对pe,roe排序,并填入值,最后进行大排序,选取前30
  • 后面问了朋友,自己分析得名单一个都没买,大写的尴尬。
  • 不构成投资建议,投资需谨慎!!!!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小阳世界2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值