- 博客(101)
- 收藏
- 关注
原创 PaDEL‐Descriptor软件安装和使用
其中一些是专门为分子描述符的计算而开发的(如:BlueDesc、CDK Descriptor 、DRAGON、MODEL等),也有一些QSAR软件具有计算分子描述符的功能(如: CODESSA Pro, Discovery Studio, Sybyl, MOE),此外,还有一些开源库,例如JOELib、Chemistry Development Kit (CDK)也提供了计算分子描述符的功能。弥补了上述的不足,使用java语言开发,具有可视化界面,接受多种分子文件格式。5. 点击“关闭”。
2025-11-01 00:49:50
756
3
原创 皂苷和氨基酸反应项目
皂苷和多肽成功反应的代码,我的这个项目比较特殊,因为我甾环上的羟基并不能被成功识别,因为不是常规意识上的碱。单个皂苷和单个氨基酸调试成功的代码。
2025-06-20 05:56:57
313
原创 如何使用预训练模型进行预测和筛选
2. **加载机制**:当您调用`model.load_state_dict(torch.load(model_path))`时,PyTorch需要先有一个结构相同的模型实例,然后才能将保存的权重加载到这个实例中。1. **模型结构一致性**:`.pt`或`.pth`文件只保存了模型的权重参数,而不包含模型的结构定义。使用预训练模型进行预测时,仍然需要定义与训练时相同的模型结构。是的,**预测时也必须重新定义与训练时一模一样的MLP模型结构**。1. **定义(和训练时完全一致的)MLP类结构**。
2025-06-20 01:18:23
375
原创 集群使用办法
试了好多软件,最终发现是第一登录没法识别主机。然后换了好几个SSH软件,最终WindTerm软件能够勾选为 已知。可以先薛定谔软件witer出来sh脚本,然后通过这个sh脚本编写提交脚本。2.2 只能 sbatch提交脚本,不能sh xx.sh运行。首先遇到的问题是登录不上的问题,如 sbatch xx.sh。必须脚本提交,不能图形化提交。
2025-06-14 01:20:14
200
原创 (linux系统)unbuntu指令大全
chmod u=rwx file --------->表示file文件的拥有者可以读写执行file文件。chmod u=rw file --------->表示file文件的拥有者可以读写file文件。chmod u-x file --------->表示file文件的拥有者不可以执行file文件。chmod a=rwx file --------->表示所有人可以读写执行file文件。ls -a -------->查看当前目录下隐藏文件 默认前面加.
2025-06-13 17:23:25
424
转载 Gromacs伞形采样原理
这一过程属于拉伸动力学(SMD)范畴。在拉伸过程中,上述被牵引的区域发生位移,然后挑选这期间的一些构象,以这些构象为初始帧进行独立的模拟(如图1)。值得注意的是,上文提到拉伸过程中施加的力是简谐力,其特点是当作用到拉伸物体上时,被拉伸物与施加力起点存在运动不同步现象,这主要取决于“弹簧”的弹性系数,如果弹性系数越强二者运动越同步。伞形采样选取的一系列初始构象是拉伸过程中的某一帧,它们都处于非平衡态,因此对于这些独立的模拟在进行加权分析时往往需要舍弃前几百ps不平衡的轨迹,也就是上条命令中的-b参数控制的。
2025-06-12 08:21:11
371
转载 PharmMapper: 基于配体药效团的在线“反向钓靶”工具
PharmMapper 的运作思路十分巧妙:它预先计算好所有蛋白活性口袋的药效团特征。用户上传活性小分子后,仅需计算该小分子的药效团。随后,将小分子的药效团与蛋白活性口袋的药效团进行匹配并打分,最终保留打分排名靠前的受体,为确定小分子的作用靶点提供极具价值的线索。
2025-06-12 07:44:18
1097
原创 使用伞形采样研究Her2蛋白聚集的详细操作指南
伞形采样是一种强大的增强采样技术,非常适合研究蛋白质-蛋白质相互作用。下面我将为您提供一个详细的操作指南,说明如何使用GROMACS进行伞形采样来研究Her2蛋白的聚集过程。
2025-06-12 04:40:52
977
1
原创 分子动力学-如何使用pymol调整结构位置
第一步:选中蛋白或者分子,action-drag matrix。第二步开始拖动: Shift+按住滑轮,拖动;保存单独的两个gro文件。
2025-06-11 00:50:40
595
原创 pymol手动移动分子
Setp4: 开始做动画, mset 1x200, 当前画面保存第一帧:mview store, object=4lyw, 然后重复第二个对象:mview store, object=obj01。Setp6: 定位帧数:frame 170,保存当前动画:mview store, object=4lyw, 然后重复第二个对象:mview store, object=obj01。Step1 首先 蛋白和分子分离:选中分子后,sele->A->extract object。使分子与蛋白口袋结合。
2025-06-11 00:44:33
635
原创 如何使用Chemprop2.2.0
不知道为啥会一直报错,不过,通过我的fix_csv.py脚本能修成(虽然我看不出来修正前后有啥区别),输入文件重命名为了clean_data.csv,然后这个文件能成功。首先需要一个包含SMILES列和目标标签的列。训练chemprop。
2025-06-05 03:25:42
852
3
原创 DJJ:Gromacs小分子和膜分子动力学结束后,分析结果教程汇总
分子动力学结束后,第一件事就是进行周期性矫正通常跑完分子动力学后,轨迹文件中分子可能存在跨过周期性边界的情况,需要校正模拟体系的周期性。可输入以下命令校正周期性DJJ:运行完后,现在GROMACS要求您"选择用于中心化的组"(Select group for centering),并显示了可用的组:System (系统) - 53726个元素Other (其他) - 53726个元素POPG - 20574个元素 (这是一种磷脂)POPE - 6750个元素 (这是另一种磷脂)
2025-05-22 05:44:10
1186
原创 VMD查看蛋白质-配体的分子动力学模拟轨迹
这里的轨迹是100ns,10000帧,如图0代表第一帧,10001是最后一帧,10代表每10帧保存一帧,保存文件类型为trr,命名时候trr要自己打上。我自己的换了新电脑之后,安装1.9.4版本可以查看完整版的100ns的10000帧的轨迹,没什么问题。看动力学模拟的md.mdp文件,这些参数都是自己设置的,nsteps是总步数,nstxcout是多少步输出一帧,前者除上后者就是总的帧数。但是有一个很尴尬的问题就是,如果要保存部分轨迹,也需要加载完全部的,一般加载时候中后期电脑就崩了。
2025-05-20 17:36:57
1266
原创 unbuntu系统下安装VMD
然后打开configure,修改下面两行,注意。上传到服务器或者是win 11的。(在原教程基础上去掉home)(原教程有一点细节问题)文件中加入下面内容,注意。一般来说均可正常运行。
2025-05-20 04:31:52
704
原创 因为gromacs必须安装cuda(系统自带的NVIDIA驱动不行),这里介绍下如何安装cuda
3.取消Driver、然后选择Install(敲击空格取消Driver)1.选择continue。2.输入accept。
2025-05-05 21:48:06
679
原创 2025年gromacs安装教程
对应官网安装教程安装gromacs(每个版本的安装方法不一样,参考具体的版本,本安装教程参考2022.5教程)博主说:注意:重启系统后,每次运行gmx前需要输入最后的source一行。说过19.6、22.5、23.3好用,我选了22.5版本。DJJ:反正我自己不不确定,如果不行,就source一下。因为我的unbuntu系统是20版本的,依赖包版本。,点击左侧Installation guide。选择https这个下载。
2025-05-05 03:33:07
3526
原创 如何卸载gromacs更换版本
第二,我之前装的时候,没有安装gpu支持版的,只安装了cpu支持的,虽然可以跑,但太慢了,没有搞头。第一,我之前装的2022.5版力场版本太老了,没有charmm36只有charmm27.(在如下目录里运行sudo make uninstall,下图是已经卸载完成的)# 如果你保留了编译目录,可以在编译目录中执行。
2025-05-05 03:25:41
422
原创 当使用gromcas进行分子动力学模拟时,如何兼顾系统的conda环境
博主遇到一个问题,因为之前频繁需要在unbuntu系统中,使用python脚本以及机器学习模型。但是由于conda管理的需要,我的环境长期需要停留在base或者其他conda环境。但使用gromacs一些配套工具的时候,如pymol;在base环境中无法调用安装的pymol,重新安装也没用。然后查询教程才知道,必须退出base环境,才行。重新进入base环境。
2025-05-05 00:36:09
338
原创 PaDEL配置和使用
PaDELPy 是一个用于计算分子描述符和指纹的 Python 包装器,它允许用户通过 Python 直接访问 PaDEL-Descriptor 软件的命令行接口。PaDEL-Descriptor 是一个广泛使用的分子描述符计算工具,而 PaDELPy 则简化了在 Python 环境中使用该工具的过程。安装 Java Runtime Environment (JRE): 由于 PaDEL-Descriptor 是基于 Java 的,因此需要安装 JRE 6 或更高版本。
2024-11-15 22:46:57
1536
原创 【重装系统后重新配置3】帮老项目设置 编译器
2.conda执行程序里 找到 E:\anaconda\Scripts\conda.exe。1. python interpreter 设置conda environment。
2024-11-05 19:16:59
260
原创 【重装系统后重新配置2】pycharm 终端无法激活conda环境
pycharm 终端无法激活 conda 环境,但是 Windows本地终端是可以激活的。原因是pycharm 默认的终端是 Windows PowerShell。一、在设置里,修改为cmd。
2024-11-05 11:12:12
1050
4
原创 【重装系统后重新配置1】把Anaconda从硬盘恢复方法(亲测可用)
1.首先保证安装目录文件完整2.添加系统环境变量3然后进入安装目录打开cmd命令窗口,输入一下如下命令。
2024-11-04 22:56:20
562
原创 [回归指标]相关性评价:R2、PCC(Pearson’s r )
皮尔逊相关系数是研究变量之间线性相关程度的量,R方和PCC是不同的指标。R方衡量x和y的接近程度,PCC衡量的是x和y的变化趋势是否相同。然而,由于它将每个单独的数据点与整体平均值进行比较,所以 Pearson’s r 只考虑直线。我们通常可以将两个变量之间的关系描绘成一个点云,分散在一条线的两侧。点云的分散度越大,数据越「嘈杂」,关系越弱。然而,这些变量之间的关系很显然是非随机的。幸运的是,我们有不同的相关性方法。在上面的图中,Pearson’s r 并没有显示研究对象的相关性。
2024-02-29 22:27:41
5890
原创 [分类指标]准确率、精确率、召回率、F1值、ROC和AUC、MCC马修相关系数
准确率(Accuracy):正确分类的样本个数占总样本个数,精确率(Precision)(查准率):预测正确的正例数据占预测为正例数据的比例,召回率(Recall )(查全率):预测为正确的正例数据占实际为正例数据的比例,F1 值(F1 score): 调和平均值,准确率、精确率、召回率、F1 值主要用于分类场景。准确率可以理解为预测正确的概率,其缺陷在于:当正负样本比例非常不均衡时,占比大的类别会影响准确率。
2024-02-29 16:44:12
2243
原创 [分子指纹]关于smile结构的理解
Q2改:C1C(C(C2C(C1)(C3C(CC2)(C4(C(=CC3)C5C(CC4)(CCC(C5)(C)C)C(=O)O)C)C)C)(C)C)O[C@@H]我的案例中有个奇怪的现象,我发现。
2024-02-27 03:47:13
984
原创 【shap】使用shap画图时colorbar颜色条不能正常显示
参考上面的帖子,是matplotlib版本问题,我原来的版本是3.5.0,降级回3.4.3就正常了。下面,我的shap值全是蓝色的,没有红色。(注:蓝色是负贡献,红色是正贡献)
2024-02-20 19:55:12
881
原创 关于怎么监督机器学习训练的进度
许多机器学习框架(例如TensorFlow和Keras)支持回调函数,它们可以在训练的不同阶段执行特定的操作。例如,可以使用回调函数记录每个epoch的性能指标,保存模型的检查点,动态调整学习率等。不知道大家有没有我这种烦恼,运行机器学习模型的时候,一直在哪运行,也不知道啥时候会结束,等也不是,不等也不是,又着急想看到结果。许多机器学习框架会在训练过程中输出日志信息,其中包含每个epoch的损失、准确率等指标。这些信息可以帮助你了解模型的训练进度。有些框架提供了用于可视化训练进度的进度条工具。
2024-02-18 22:12:08
1020
1
原创 热图分析(这个热力图代表的是不同描述符与pIC50之间的皮尔逊相关系数。)
相关系数的值通过色阶上的颜色来表示:负相关系数通常用冷色(如蓝色或紫色)表示,正相关系数通常用暖色(如红色或粉色)表示,接近零的相关系数通常用中性色(如白色或灰色)表示。例如,在这个热力图中,"Infective-50"与pIC50之间有一个0.46的相关系数,这是一个较强的正相关,表明"Infective-50"高的时候,pIC50也高。综上所述,这个热力图提供了一种快速可视化不同描述符与pIC50之间关系强度和方向的方法,但是具体的分析和结论需要依据研究的背景和附加的统计测试来做进一步的验证。
2024-01-06 01:45:11
3106
原创 conda和pip配置国内镜像源
中国科技大学: https://pypi.mirrors.ustc.edu.cn/simple/清华:https://pypi.tuna.tsinghua.edu.cn/simple。阿里云:https://mirrors.aliyun.com/pypi/simple/华中理工大学:https://pypi.hustunique.com/山东理工大学:https://pypi.sdutlinux.org/豆瓣:https://pypi.douban.com/simple/添加镜像源(永久添加)
2023-12-18 01:20:09
1563
转载 GBDT算法原理以及实例理解
在分类树中最佳划分点的判别标准是熵或者基尼系数,都是用纯度来衡量的,但是在回归树中的样本标签是连续数值,所以再使用熵之类的指标不再合适,取而代之的是平方误差,它能很好的评判拟合程度。首先,GBDT使用的决策树是CART回归树,无论是处理回归问题还是二分类以及多分类,GBDT使用的决策树通通都是都是CART回归树。对于回归树算法来说最重要的是寻找最佳的划分点,那么回归树中的可划分点包含了所有特征的所有可取的值。为什么不用CART分类树呢?因为GBDT每次迭代要拟合的是梯度值,是连续值所以要用回归树。
2023-12-17 16:01:55
289
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅