Ollama本地部署,离线使用大模型

Ollama是什么

Ollama 是一个本地大模型运行框架,它允许用户在自己的计算机上运行和使用大型语言模型(LLM)。它的设计目标是简化大模型的运行过程,使得非专业的普通用户也能够轻松地玩转这些通常需要高端硬件和复杂设置才能运行的模型。目前 Ollama 已经支持了 windowslinuxmacos

实操

第一步,来到官方网站,地址是:https://ollama.com/download?utm_source=lobehub&utm_medium=docs&utm_campaign=download-windows

我这里是 windows 10系统,下载的是 exe 安装包

93d02089c250a4629e97f61433078717.jpeg

ollama

程序默认安装在了 C 盘,期间会拉取几个较大的文件,请确保有足够大的空间

4d1a39b3887c233014f82b9534b68c71.jpeg

ollama

安装完成后,自动弹出 powershell,输入 ollama run llama2

b1f709f384636e025b38595384316377.jpeg

ollama

看到 success,就安装成功了

向大模型提个问题吧

1bb72ba45d18db40fdedaa5a806eee11.jpeg

ollama

中文也能应付自如,不过有时候输入后,删除会不起作用,比较影响观感

e0513d2b6a294e7113a8977214846718.jpeg

ollama

最后,说一下我的电脑配置,显卡是 Nivida GTX 1660 6G,运行完全没有问题。

dd30c2860b615415a850ea1cb7feadbb.jpeg

ollama

参考资料

  • https://ollama.com/

e98746085fdef160eacaa6706460563f.jpeg

### 如何在Ollama平台上上传本地离线的大规模预训练模型 #### 准备阶段 为了成功地将大规模预训练模型部署Ollama平台,需先确认该平台支持所使用的框架版本。大多数云服务平台会提供详细的文档来指导用户完成这一过程。确保模型文件已妥善保存,并且所有依赖项均已准备好。 #### 配置环境 创建适合运行大型神经网络的工作环境至关重要。考虑到CNN属性提取模型与CAE相结合的方式能够充分利用大量未标注的数据集进行无监督学习[^1],这意味着如果计划中的大模型同样基于类似的架构,则可能需要配置相应的计算资源以适应这种需求。对于GPU状态监控可以借助`gputil`这样的Python模块实现自动化管理[^3]: ```python import gputil GPUs = GPUtil.getGPUs() gpu_free_memory = [gpu.memoryFree for gpu in GPUs] print(f"Available GPU memory: {gpu_free_memory}") ``` 此脚本可以帮助监测可用的显存情况,从而合理安排模型加载时机。 #### 数据传输 当涉及到处理非常庞大的数据集或模型参数时,直接通过互联网上传可能会遇到带宽限制等问题。此时建议采用更高效的数据迁移策略,比如利用专用硬件设备或者寻求服务商提供的线下导入服务。具体操作应参照Ollama官方指南来进行。 #### 模型注册与验证 一旦完成了初步设置之后,在Ollama上注册新模型之前应当对其进行充分测试,确保其性能满足预期目标。这一步骤不仅限于简单的功能检验还包括评估不同尺度下的表现差异。只有经过严格审查后的高质量模型才值得被正式引入生产环境中。 #### API调用实例 假设已经获得了必要的API密钥和其他认证信息,下面是一个简化版的例子展示怎样使用RESTful接口向Ollama提交一个新的预训练模型(注意实际应用中还需加入错误处理逻辑): ```bash curl -X POST https://api.ollama.com/v1/models \ -H "Authorization: Bearer YOUR_API_KEY_HERE" \ -F file=@/path/to/model/file.zip \ -F name="MyLargePretrainedModel" ``` 以上命令行工具演示了如何发送HTTP请求给指定端点,附带上载的目标压缩包路径以及自定义名称标签以便后续管理和引用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迷途小书童的Note

请博主喝矿泉书!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值