04-树7 二叉搜索树的操作集 (30分)

本题要求实现给定二叉搜索树的5种常用操作。

函数接口定义:

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};
  • 函数InsertX插入二叉搜索树BST并返回结果树的根结点指针;
  • 函数DeleteX从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
  • 函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
  • 函数FindMin返回二叉搜索树BST中最小元结点的指针;
  • 函数FindMax返回二叉搜索树BST中最大元结点的指针。

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT );  /* 中序遍历,由裁判实现,细节不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");

    return 0;
}
/* 你的代码将被嵌在这里 */

输入样例:

10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3

输出样例:

Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9

Position Find( BinTree BST, ElementType X )
{//在BST中找到X,返回该结点的指针;找不到则返回空指针
	if(!BST)
	{
		return NULL;
	}
	if(X==BST->Data)
	{
		return BST;
	}
	if(X<BST->Data)
	{
		return Find(BST->Left,X);//这里如果不写return,则返回值给不到最初的函数 
	}
	else if(X>BST->Data)
	{
		return Find(BST->Right,X);//这里如果不写return,则返回值给不到最初的函数
	}
	//上面这个方法是递归的。下面这个方法是迭代,效率更高
	while(BST)
	{
		if(X<BST->Data)
			BST=BST->Left;
		else if(X>BST->Data)
			BST=BST->Right;	
		else /* X == BST->Data */
			return BST;/* 查找成功 , 返回结点的找到结点的地址*/
	} 
	return NULL;/* 查找失败*/
}

Position FindMin( BinTree BST )
{
	if(!BST)/* 空的二叉搜索树,返回NULL*/
	{
		return NULL;
	}
	else if(!BST->Left)/* 找到最左叶结点并返回*/
	{
		return BST;
	}	
	else if(BST)/* 沿左分支继续查找*/
	{
		return FindMin(BST->Left);
	}
	//上面这个方法是递归的。下面这个方法是迭代,效率更高 
//	if(BST)
//	{
//		while(BST->Left)	//不断地让BST指向其左孩子,直到没有左孩子为止 
//		{
//			BST=BST->Left;
//		}
//	}
//	return BST;
}

Position FindMax( BinTree BST )
{
	if(!BST)
	{
		return NULL;
	}
	else if(!BST->Right)
	{
		return BST;
	}	
	else if(BST)
	{
		return FindMax(BST->Right);
	}
	//上面这个方法是递归的。下面这个方法是非递归,效率更高 
//	if(BST)
//	{
//		while(BST->Right)	//不断地让BST指向其左孩子,直到没有左孩子为止 
//		{
//			BST=BST->Right;
//		}
//	}
//	return BST;
}

BinTree Insert( BinTree BST, ElementType X )
{	//将X插入二叉搜索树BST并返回结果树的根结点指针;
	if(!BST)/* 若原树为空 , 生成并返回一个结点的二叉搜索树*/
	{
		BST=(BinTree)malloc(sizeof(struct TNode));
		BST->Data=X;
		BST->Left=NULL;
		BST->Right=NULL;
	}
	else
	{/* 开始找要插入元素的位置*/
		if(X<BST->Data)
		{
			BST->Left=Insert(BST->Left,X);
		}	
		else if(X>BST->Data)
		{
			BST->Right=Insert(BST->Right,X); 
		}
	}	

	return BST;
} 


BinTree Delete( BinTree BST, ElementType X )
{//将X从BST中删除,并返回根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
	BinTree temp;
	if(!BST)
	{
		printf("Not Found\n");
		return BST;
	}
	if(X<BST->Data)
	{
		BST->Left=Delete(BST->Left,X);
	}
	else if(X>BST->Data)
	{
		BST->Right=Delete(BST->Right,X); 
	}else{
		if(BST->Left&&BST->Right)/* 被删除结点有左右两个子结点 */
		{
			temp=FindMin(BST->Right);//要么找右子树最小的,要么左子树最大的 
			BST->Data=temp->Data;
			BST->Right=Delete(BST->Right,BST->Data);			
		}
		else/* 被删除结点有一个或无子结点*/
		{
			temp=BST;
			if(!BST->Left)/*  有右孩子或无子结点*/
			{
				BST=BST->Right;
			}
			else if(!BST->Right)/* 有左孩子或无子结点*/
			{
				BST=BST->Left;
			}
			free(temp);
		}
	}
	return BST;	
}






  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 二叉搜索树是一常见的数据结构,它具有以下特点: 1. 每个节点最多有两个子节点,左子节点的值小于父节点的值,右子节点的值大于父节点的值。 2. 可以进行插入、删除、查找等操作二叉搜索树操作包括以下几个操作: 1. 插入操作:将一个新节点插入到二叉搜索树中,保持二叉搜索树的性质。 2. 删除操作:删除一个节点,并保持二叉搜索树的性质。 3. 查找操作:查找一个节点是否存在于二叉搜索树中。 4. 遍历操作:按照某顺序遍历二叉搜索树中的所有节点,包括前序遍历、中序遍历和后序遍历。 5. 最小值和最大值操作:查找二叉搜索树中的最小值和最大值。 6. 前驱和后继操作:查找某个节点的前驱和后继节点。 7. 高度和深度操作:计算二叉搜索树的高度和深度。 以上操作都可以通过递归或迭代的方式实现。在实际应用中,二叉搜索树常用于排序、查找和存储数据等方面。 ### 回答2: 本题要求实现二叉搜索树操作,包括插入、查询、删除、中序遍历等常见操作二叉搜索树是一数据结构,具有以下特点:每个节点最多有两个子节点,左子节点的值小于父节点,右子节点的值大于父节点。因此,可以根据节点的值快速定位到节点,实现高效的插入、查询、删除和排序等操作。 为了方便实现二叉搜索树操作,我们可以定义一个二叉节点的结构体,包括节点的值、左右子节点和父节点等信息。具体实现中,需要注意以下细节: 1. 插入节点:从根节点开始,比较节点的值,如果比当前节点小,则将其插入到左子,否则插入到右子。如果遍历到空节点,则在此处插入新节点。 2. 查询节点:从根节点开始,比较节点的值,如果等于目标值,则返回该节点。如果比目标值小,则继续在左子中查找,否则在右子中查找。 3. 删除节点:先查询要删除的节点。如果是叶子节点,则直接删除即可;如果有一个子节点,则将其子节点连接到父节点上;如果有两个子节点,则用其右子中最小的节点代替要删除的节点,并删除右子中的该节点。 4. 中序遍历:从根节点开始,先遍历左子,然后处理当前节点,最后遍历右子。中序遍历的结果是一个递增的序列,可以用于排序等场景。 除了上述操作,还可以实现其他操作,例如查找最小节点、查找最大节点、统计节点数量等。 在实现二叉搜索树的过程中,需要注意处理好各边界情况,包括空节点、删除节点的子情况等。此外,还要注意维护好的平衡性,避免出现极端情况导致的高度过高,影响操作效率。 总之,实现二叉搜索树操作需要综合运用的基本知识和算法思想,并善于思考和调试,才能达到高效且正确的效果。 ### 回答3: 二叉搜索树是一常见的数据结构,它具有快速查找、插入、删除的特点。本题要求实现二叉搜索树操作,包括插入、删除、查找等操作。 插入操作实现是很简单的,从二叉搜索树的根节点开始,比较插入值与当前节点的大小关系,如果小于当前节点,则往左子插入,如果大于当前节点,则往右子插入,一直到找到合适的位置为止。 删除操作需要考虑三情况:待删除节点没有子节点、待删除节点只有一个子节点、待删除节点有两个子节点。对于第一情况,直接将父节点的指针置为 null 即可。对于第二情况,将父节点指向子节点即可。对于第三情况,需要找到待删除节点的前驱或后继来替代待删除节点。本题采用寻找后继的方法进行删除。 查找操作实现也很简单,从二叉搜索树的根节点开始,比较待查找值与当前节点的大小关系,如果小于当前节点,则往左子查找,如果大于当前节点,则往右子查找,直到找到待查找的值为止。 本题实现需要注意一些细节。比如,在进行删除操作时,需要设置一个父节点的变量,保存当前节点的父节点,这样可以方便地进行节点的删除。还需要注意一些特殊情况,比如待删除节点没有前驱或后继的情况,这情况下需要特殊处理。 总之,二叉搜索树是一非常重要的数据结构,它的实现需要注意一些细节,但还是相对比较简单的。掌握了二叉搜索树操作,对于算法和数据结构的学习都有非常大的帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值