使用deepseek,chatgpt,智谱接口

前段的ai挺火的,deepseek,之前deepseek是没向大众开放api接口,昨天看了,居然可以使用了。现在我来教一下不会的人使用。

一、deepseek

打开deepseek官网,没有账号的需要注册登录。

首先需要实名认证,输入姓名,身份证号即可,然后选择充值

接下来就是创建key了

然后是使用,官网示例是默认使用deepseek-chat,实测不好用,我用的是deepseek-reasoner,更加好用,(好用不好用的区别就是,让它模仿某吧话语,deepseek-reasoner可以,但是deepseek-chat不可以),

1.新建文件夹
2.在该文件夹目录打开cmd窗口
3.npm init -y
4.npm i openai
5.创建index.js文件
6.复制下面的内容
7.node index.js

index.js代码附上

const OpenAI = require('openai');

const openai = new OpenAI({
    baseURL: 'https://api.deepseek.com',
    apiKey: '你刚刚复制的key'
});

async function main() {
    const completion = await openai.chat.completions.create({
        messages: [
            { role: "user", content: "快给老子分析就业形势!" },
            { role: "assistant", content: "好的大哥" }, // 后续随便加
            { role: "user", content: "继续喷!" }
        ],
        model: "deepseek-reasoner", 
        temperature: 0.3 // 加点buff更稳
    }, {
        headers: { "Content-Type": "application/json" } // 灵魂焊点
    });
    console.log(completion.choices[0].message.content);
}

main();

这样deepseek的接口对接就完成了。

可以看一下我的使用数据,10块钱自己玩还是可以玩很久的(如果只是自己玩就没必要,直接去官网玩),如果商用给用户用的话,可以在提示词中让它精简话语,返回的数据也会减少,节约使用量。

二、chatgpt

我测过了,不怎么好用,并且要绑定银行卡,就不详述了,直接上代码。

const OpenAI = require('openai');
const openai = new OpenAI({
    apiKey: "",
    baseURL: "https://api.openai-proxy.com/v1", // 这里替换为你找到的代理地址
  });

const completion = openai.chat.completions.create({
  model: "gpt-4o-mini",
  store: true,
  messages: [
    {"role": "user", "content": "write a haiku about ai"},
  ],
});

completion.then((result) => console.log(result.choices[0].message));

有代理访问会快一点。我觉得对话的话用deepseek就很不错

三、智谱AI

官网:https://open.bigmodel.cn/

同样是注册账号,创建apikey

智谱AI开放平台API keys

1.新建文件夹
2.在该文件夹目录打开cmd窗口
3.npm init -y
4.npm i axios
5.创建index.js文件
6.复制下面的内容
7.node index.js

附上代码

图片生成的代码,智谱AI开放平台搜cogview-4-250304有详细的文档

const axios = require("axios");

const API_KEY = ""; // 请替换为你的智谱 API Key

async function getStory() {
  try {
    const response = await axios.post(
    "https://open.bigmodel.cn/api/paas/v4/images/generations", //图片生成 API 地址
      {
        model: "cogview-4-250304", // 模型名称
        prompt:"一只可爱的小猫咪"
      },
      {
        headers: {
          "Content-Type": "application/json",
          Authorization: `Bearer ${API_KEY}`,
        },
      }
    );
    console.log("AI 生成的图片地址:", response.data);
  } catch (error) {
    console.error("请求失败:", error.response ? error.response.data : error);
  }
}

// 调用函数
getStory();

文本生成的代码 ,智谱AI开放平台搜glm-4-plus有详细的文档

const axios = require("axios");

const API_KEY = ""; // 请替换为你的智谱 API Key

async function getStory() {
  try {
    const response = await axios.post(
     "https://open.bigmodel.cn/api/paas/v4/chat/completions",
      {
        model: "glm-4-plus", // 模型名称
        messages: [
          {
             role: "user",
             content:
              "作为童话之王,请以始终保持一颗善良的心为主题,写一篇简短的童话故事。故事应能激发孩子们的学习兴趣和想象力,同时帮助他们更好地理解和接受故事中蕴含的道德和价值观。",
           },
         ],
      },
      {
        headers: {
          "Content-Type": "application/json",
          Authorization: `Bearer ${API_KEY}`,
        },
      }
    );

     console.log("AI 生成的童话故事:", response.data.choices[0].message.content);
  } catch (error) {
    console.error("请求失败:", error.response ? error.response.data : error);
  }
}

// 调用函数
getStory();

还有很多就不一一举例了。请自行测试

总结

如果只是聊天,分析,如果想有意思,更智能(更牛逼)首选deepseek的deepseek-reasoner,如果有各种需求,建议使用智谱AI开放平台

如果有不同意见或者更优质的ai欢迎分享

### 比较DeepSeekChatGPT的功能差异 #### 功能特性对比 DeepSeekChatGPT 是两个不同的多模态对话模型,各自具备独特的功能和技术特点。 对于 DeepSeek 而言,该模型强调了其在处理复杂文本推理方面的能力。具体来说,采用多跳图卷积网络以及高阶切比雪夫近似技术来增强对文本的理解能力[^1]。这种架构使得 DeepSeek 特别擅长于捕捉文档内部结构化信息之间的关系,并能够更深入地理解语义层次上的联系。 相比之下,ChatGPT 的设计则更加注重通过精心构建提示词(prompt)来进行交互优化[^3]。有效的提示工程可以显著提高模型的表现力,确保生成的回答不仅连贯而且紧密贴合上下文环境;同时还能引导系统按照预期目标进行回应。此外,ChatGPT 还展示了强大的跨领域适应性和灵活性,在多种不同类型的任务中均能取得良好效果[^2]。 #### 技术实现方式 - **DeepSeek**: 利用了先进的图形神经网络框架,特别是针对自然语言处理任务进行了专门定制化的改进。这种方法有助于更好地建模实体间的关系并挖掘潜在模式。 ```python import torch class MultiHopGCN(torch.nn.Module): def __init__(self, input_dim, hidden_dims, num_hops=2): super(MultiHopGCN, self).__init__() layers = [] current_dim = input_dim for i in range(num_hops): layer = GCNLayer(current_dim, hidden_dims[i]) layers.append(layer) current_dim = hidden_dims[i] self.layers = torch.nn.Sequential(*layers) def forward(self, x, adj_matrix): h = x for layer in self.layers: h = layer(h, adj_matrix) return h ``` - **ChatGPT**: 主要依赖大规模预训练加微调策略,利用大量无标注数据作为基础资源完成初步学习过程之后再基于特定应用场景下的少量有标签样本进一步调整参数配置以达到更好的泛化能力和针对性表现。 #### 应用场景适用性 由于两者的技术路线存在明显区别,因此它们分别适用于不同类型的业务需求: - 当面对涉及深层次逻辑关联分析的需求时,比如法律文件解析、科研论文综述撰写等场合下,DeepSeek 可能会提供更为精准的支持; - 如果项目侧重于广泛话题交流互动或是创意内容创作,则 ChatGPT 凭借其出色的通用性和易用性的优势或许更能满足实际要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值