Anaconda+pycharm(jupyter lab)搭建环境

之前先是安装了pycharm,手动安装了python2.7和3.7版本,在pycharm里面使用alt+/手动下载包。后来想使用jupyter lab,手动下载包太麻烦且有版本管理的文艺,于是打算装Anaconda。

anaconda里面集成了包括python在内的很多工具,该python包含了很多常用的包,例如numpy、sklearn等,我们在pycharm中配置后可以直接使用,非常方便。

anaconda安装后即可以使用conda install XXX等命令,conda是一个包管理与环境管理的工具,包管理即类似pip,环境管理即用于切换python版本。

参考了下面的博客:https://blog.csdn.net/qq_29883591/article/details/78077244

其中与博客几个不一样的地方如下:

1、在清华大学网站现在的镜像3.5版本:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

2、在pycharm中选择project interpreter

3、在pycharm中的terminal终端中可以通过conda list查看已经安装的包。

4、在终端中通过anaconda安装包 conda install XXX

5、当下载包出现以下错误时The following packages are not available from current channels,可以通过添加channel的方法来解决:https://blog.csdn.net/u010774119/article/details/79790022

6、使用conda下载包的时候为什么会一下下载很多包?

7、搭建jupyter lab:安装好ananconda后在开始菜单中启动anaconda prompt,输入jupyter lab登录服务器,在黑框中有一串URL直接将其复制到浏览器jupyter lab,或者在弹出的浏览器框中输入下图中蓝色的token即可使用jupyter lab。

http://localhost:8889/?token=0e2d991fc67db10cfca46046289074a19a4a9a8187c3f1d9
[I 09:44:43.602 LabApp] Accepting one-time-token-authenticated connection from ::1

转载于:https://www.cnblogs.com/simpleDi/p/9992055.html

<think>好的,用户想了解如何在Windows下搭建Python开发环境的具体步骤工具推荐。首先,我需要回忆一下相关的知识,并结合提供的引用内容来组织回答。 根据引用[2],搭建Python环境的第一步是安装Python解释器。用户需要到官网下载安装包,选择适合的版本,比如3.x系列。安装过程中记得勾选“Add Python to PATH”以便在命令行中使用。安装完成后,可以通过命令行输入python --version来验证,如引用[4]所示,显示版本号即成功。 接下来是编辑器的选择。引用[3]推荐了PyCharm,分为社区版专业版,社区版免费且适合初学者。安装PyCharm后,配置解释器路径,这通常在设置里完成,指向之前安装的Python.exe。此外,VS Code也是一个轻量级选项,需要安装Python扩展,这在引用里没有提到,但属于常见做法,可能需要补充说明。 虚拟环境部分,虽然引用中没有详细说明,但venv是Python自带的工具,使用命令python -m venv myenv可以创建,激活后安装依赖库,如requestsnumpy,这些都是常用的库,用户可能需要这些示例。 工具推荐方面,除了PyCharmVS Code,Jupyter Notebook适合数据分析,但引用里没有提到,可以适当加入。包管理工具pip是必须提到的,引用[2]提到安装Python解释器时会自带pip,所以用户可以直接使用。 最后,验证开发环境,创建一个测试脚本,运行无误则说明环境搭建成功。常见问题如PATH未配置,需要提醒用户检查,或者重新安装时勾选选项。 需要确保步骤清晰,分点说明,工具推荐部分区分必选可选,帮助用户根据需求选择。同时,注意引用来源,比如PyCharm的下载链接来自引用[3],安装Python的步骤参考引用[2][4]。 可能用户是刚入门的开发者,所以语言要简洁明了,避免专业术语过多。同时,提供相关问题,帮助他们进一步学习,比如虚拟环境的使用、不同编辑器的对比等。</think>### 如何搭建 Python 开发环境? #### 1. **安装 Python 解释器** - **步骤**: 1. 访问 [Python 官网](https://www.python.org/downloads/),下载最新稳定版(如 3.x 系列)安装包。 2. 运行安装程序,勾选 **`Add Python to PATH`**(关键步骤,否则需手动配置环境变量)[^2]。 3. 完成安装后,打开命令行输入 `python --version`,若显示版本号(如 `Python 3.7.7`)即安装成功[^4]。 - **验证示例**: ```bash C:\Users\YourName> python --version Python 3.12.0 ``` #### 2. **选择代码编辑器/IDE** - **推荐工具**: - **PyCharm**(适合专业开发): - 下载地址:[JetBrains PyCharm](http://www.jetbrains.com/pycharm/) - 社区版免费,支持语法高亮、调试、版本控制等功能[^3]。 - **VS Code**(轻量级,需安装插件): - 安装 Python 扩展包(如 `Python`、`Pylance`),通过插件市场一键配置。 - **Jupyter Notebook**(适合数据分析): - 通过 `pip install jupyterlab` 安装,支持交互式编程。 #### 3. **配置虚拟环境(可选但推荐)** - **作用**:隔离项目依赖,避免版本冲突。 - **步骤**: 1. 命令行输入 `python -m venv myenv` 创建虚拟环境。 2. 激活环境: - **Windows**:`myenv\Scripts\activate` - **Mac/Linux**:`source myenv/bin/activate` 3. 安装依赖库(如 `requests`、`numpy`): ```bash pip install requests numpy ``` #### 4. **工具链推荐** - **必选工具**: - **pip**:Python 包管理工具,安装 Python 时已自带。 - **Git**:版本控制工具(需单独安装)。 - **可选工具**: - **Anaconda**:适合科学计算,集成常用数据科学库。 - **Docker**:用于容器化部署(需独立安装)。 #### 5. **验证开发环境** - 创建一个 `test.py` 文件,写入以下代码: ```python print("Hello, Python!") ``` - 在终端运行 `python test.py`,若输出 `Hello, Python!` 则环境配置成功。 --- ### 工具对比表 | 工具 | 适用场景 | 特点 | |---------------|----------------|------------------------------| | PyCharm | 大型项目开发 | 功能全面,支持Django框架 | | VS Code | 轻量级编辑 | 插件丰富,启动速度快 | | Jupyter | 数据分析 | 交互式编程,可视化结果 | --- ### 常见问题 - **问题1**:命令行输入 `python` 提示“未找到命令”? **解决**:检查是否勾选 `Add Python to PATH`,或手动添加 Python 安装路径到系统环境变量。 - **问题2**:如何升级 pip? **解决**:运行 `python -m pip install --upgrade pip`。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值