强者越强-效率与公平的幂律视角

一直以来,人们认为复杂网络的内在是泊松分布,但事实上却是幂律分布。是不是所有基于泊松分布的统计复用需要重新评估呢?比如分组交换网的拥塞控制?但这是后话,本文不谈,本文主要内容是效率和公平。

以无标度网络为例,在平滑连续的时间序列 t t t中,每单位时间接入一个节点,它会与既有节点创建 m m m个链接,在一个总节点数为 N N N的网络中,对于已经接入的节点 i i i,设它的度为 K i K_i Ki,其被链接的概率为:

p ( i ) = m K i Σ j = 1 N K j p(i)=m\dfrac{K_i}{\Sigma_{j=1}^NK_j} p(i)=mΣj=1NKjKi

上式即为优先依附,其连续形式为:

p ( i ) = m K i ( t ) ∫ 1 N K ( t ) d t = m K i ( t ) 2 m t − m = K i ( t ) 2 t − 1 ≈ K i ( t ) 2 t p(i)=m\dfrac{K_i(t)}{\displaystyle\int_1^NK(t)dt}=m\dfrac{K_i(t)}{2mt-m}=\dfrac{K_i(t)}{2t-1}\approx \dfrac{K_i(t)}{2t} p(i)=m1NK(t)dtKi(t)=m2mtmKi(t)=2t1Ki(t)2tKi(t)

另一方面,一个节点 i i i的度 K ( i ) K(i) K(i)的变化率即为被链接的概率:

d K i ( t ) d t = K i ( t ) 2 t \dfrac{dK_i(t)}{dt}=\dfrac{K_i(t)}{2t} dtdKi(t)=2tKi(t)

两边积分,解微分方程,可得:

K i ( t ) = ( C × t ) 1 2 K_i(t)=(C\times t)^{\frac{1}{2}} Ki(t)=(C×t)21

根据初始条件,当节点 i i i接入时,它共获得了 m m m条连接,即 K i ( t i ) = m K_i(t_i)=m Ki(ti)=m,代入上式:

C = m 2 t i C=\dfrac{m^2}{t_i} C=tim2

K i ( t ) = m ( t t i ) 1 2 K_i(t)=m(\dfrac{t}{t_i})^{\frac{1}{2}} Ki(t)=m(tit)21

对其求导:

K i ′ ( t ) = ( m 2 t i − 1 2 ) t − 1 2 K_i'(t)=(\dfrac{m}{2}t_i^{-\frac{1}{2}})t^{-\frac{1}{2}} Ki(t)=(2mti21)t21

K i ( t ) K_i(t) Ki(t)及其导数可以看出:

  • K i ( t ) K_i(t) Ki(t)分母和分子,越先加入的节点获得的链接越多,此为先发优势。
  • K i ′ ( t ) K_i'(t) Ki(t)的负指数,同一个节点受链接的速率逐渐降低,竞争越发激烈。

这就是无标度网络动力学,越早加入的节点,最终获得越多的链接,那么到底是多少,需要求一下节点的度的概率密度。

概率密度是积累分布的导数,积累分布是一个等于1的积分,对于 F X ( x ) = ∫ x f ( x ) d x F_X(x)=\displaystyle\int^x f(x)dx FX(x)=xf(x)dx,求 f ( x ) f(x) f(x)即可。

对于无标度网络,对于任意度 k k k,求度大于 k k k的节点比例,即为节点度为 k k k的积累分布。

K i ( t ) = m ( t t i ) 1 2 ≥ k K_i(t)=m(\dfrac{t}{t_i})^{\frac{1}{2}}\geq k Ki(t)=m(tit)21k 可得:

t i ≤ m 2 k − 2 t t_i\leq m^2k^{-2}t tim2k2t

在时间 t t t,网络中节点总数为 t + m t+m t+m,则 K i ≥ k K_i\geq k Kik的比例为:

P K i ≥ k = m 2 k − 2 t t + m P_{K_i\geq k}=\dfrac{m^2k^{-2}t}{t+m} PKik=t+mm2k2t

t t t很大时有:

P K i ≥ k = m 2 k − 2 t t + m ≈ m 2 k − 2 P_{K_i\geq k}=\dfrac{m^2k^{-2}t}{t+m}\approx m^2k^{-2} PKik=t+mm2k2tm2k2

由于先发优势,对于从 i = 1 i=1 i=1开始的连续的 K i K_i Ki,根据积累分布的定义:

P K i < k = 1 − P K i ≥ k = 1 − m 2 k − 2 P_{K_i<k}=1-P_{K_i\geq k}=1-m^2k^{-2} PKi<k=1PKik=1m2k2

这就那个积累分布,对其求导:

d P ( k ) d k = ( 2 m 2 ) k − 3 = f X ( k ) \dfrac{dP(k)}{dk}=(2m^2)k^{-3}=f_X(k) dkdP(k)=(2m2)k3=fX(k)

f X ( k ) f_X(k) fX(k)就是无标度网络的度分布,这是一个幂律分布。可以看出,前面先加入的节点占据着面积1的巨大的部分:
在这里插入图片描述

这便是马太效应,胜者通吃。

但这是为什么?

这是典型的非独立事件之间的正反馈效应,若没有考虑到这种正反馈效应,则很容易将网络视为随机网络,节点的接入被视为独立事件,但节点接入并非独立事件。

背后的根因是分形,现实中很多动力学并非在1个维度空间起作用,而是在 n > 1 n>1 n>1维空间起作用,典型地 2 ≤ n ≤ 3 2\leq n\leq 3 2n3,只要 n ≠ 1 n\neq 1 n=1,就必然会出现幂律。

非独立事件必然是关联的,最省力最安全的关联方案就是复制和吸附,背后的根本原因尚无定论,巴拉巴西的《网络科学》一书中也只是提纲挈领。但无论复制还是吸附,或者别的关联方案,都呈现出了某种偏好,即不公平趋势,这种不公平并不仅限于幂律分布的无标度网络,不公平是普遍的。

为解释不公平趋势,以生长为例开始。

设初始资源为1,分配给两个用户U1和U2,其中U1的分配额度为 0.5 + a 0.5+a 0.5+a,U2的分配额度为 0.5 − a 0.5-a 0.5a,两个用户依赖这些初始资源开始成长。

如果成长仅局限在一维,那么二者在一条长度为1的线段上便是此消彼长的关系,U1获得的资源 a ′ a' a与U2失去的资源是相等的:

( 0.5 + a ′ ) + ( 0.5 − a ′ ) = 1 (0.5+a')+(0.5-a')=1 (0.5+a)+(0.5a)=1

当U1生长为 0.5 + a ′ 0.5+a' 0.5+a的时候,U2为 0.5 − a ′ 0.5-a' 0.5a,U1的生长值比均分资源时大了 0.5 + a ′ − 0.5 0.5+a'-0.5 0.5+a0.5,U2的生长值比均分资源时小了 0.5 − ( 0.5 − a ′ ) 0.5-(0.5-a') 0.5(0.5a),两者相差 0 0 0。如果二者能力相当,那么这种拉锯战将会永远持续下去。

如果可以在二维空间成长,便无法得失相抵了,当U1生长为 ( 0.5 + a ′ ) 2 (0.5+a')^2 (0.5+a)2的时候,U2为 ( 0.5 − a ′ ) 2 (0.5-a')^2 (0.5a)2,U1的生长值比均分资源时大了 ( 0.5 + a ′ ) 2 − 0. 5 2 (0.5+a')^2-0.5^2 (0.5+a)20.52,U2的生长值比均分资源时小了 0. 5 2 − ( 0.5 − a ′ ) 2 0.5^2-(0.5-a')^2 0.52(0.5a)2,两者相差 2 a ′ 2 2a'^2 2a2

这将初现不均衡的成长趋势:

  • 更多的资源将会带来差异更大的成长值。
  • 二者的总生长值变大,这是伏笔,请注意。

所以说,当服务员说12寸披萨售罄,要用两个6寸披萨作为替换时,千万别信他的鬼话。

根据柯西不等式的可以证明,当资源分配最公平时,其总效应最小,反之当资源分配最不公平时,其总效应最大,详情可见:
https://blog.csdn.net/dog250/article/details/120889555

那么有意思了:

  • 资源分配最公平时整体上最低效。
  • 资源分配最不公平时整体上最高效。

公平和全局效率是矛盾的吗?如果是矛盾的,那么公平和效率,幂律选择哪个?

举一个例子来辅助思考,假设TCP执行AIMD拥塞控制,将带宽全部分配给一条流传输效率高呢,还是分配给两条流传输效率高呢?

假设链路无噪声丢包,丢包全部由buffer over引发,从cwnd-RTTs坐标图,可得丢包率为:

p = 1 N a i m d p=\dfrac{1}{N_{aimd}} p=Naimd1

其中 N a i m d N_{aimd} Naimd为一个AIMD周期的总传输量。如果AIMD参数分别为 α = 1 , β = 0.5 \alpha=1,\beta=0.5 α=1,β=0.5
在这里插入图片描述
求阴影部分面积,可得:

N a i m d = 0.375 C 2 N_{aimd}=0.375C^2 Naimd=0.375C2

AIMD周期内一个RTT的平均发送量为:

N a v g = 0.5 C + C 2 = 0.75 C N_{avg}=\dfrac{0.5C+C}{2}=0.75C Navg=20.5C+C=0.75C

可得吞吐与丢包率的关系为:

T = N a v g R T T = 0.75 R T T 1 0.375 p T=\dfrac{N_{avg}}{RTT}=\dfrac{0.75}{RTT}\sqrt{\dfrac{1}{0.375p}} T=RTTNavg=RTT0.750.375p1

现在,将带宽资源分给2条流,那么对于每一条流而言, C ′ = 0.5 C C'=0.5C C=0.5C,带入 N a v g N_{avg} Navg N a i m d N_{aimd} Naimd

N a v g ′ = 0.25 C + 0.5 C 2 = 0.375 C N_{avg}'=\dfrac{0.25C+0.5C}{2}=0.375C Navg=20.25C+0.5C=0.375C
N a i m d ′ = 0.375 ( 0.5 C ) 2 N_{aimd}'=0.375(0.5C)^2 Naimd=0.375(0.5C)2

计算出 p ′ p' p

p ′ = 1 0.375 ( 0.5 C ) 2 = 4 p p'=\dfrac{1}{0.375(0.5C)^2}=4p p=0.375(0.5C)21=4p

排队时延不变,RTT不变,上式带入 T T T的公式:

T ′ = 0.1875 R T T 1 0.375 p = 1 4 T T'=\dfrac{0.1875}{RTT}\sqrt{\dfrac{1}{0.375p}}=\dfrac{1}{4}T T=RTT0.18750.375p1 =41T

结论是,将带宽资源均分给2条流,每条流的有效带宽只获得了 1 4 \dfrac{1}{4} 41,有一半带宽被浪费了。如果想获得全局的最佳性能,放弃公平显然更好。

下图可以直观看出上述结论:
在这里插入图片描述
从L1>L2可见,分量越多,每个分量获得的公平资源比例 R a v g = n n 2 R_{avg}=\dfrac{\sqrt{n}}{n^2} Ravg=n2n 就越缩水,离 R B a v g = 1 n R_{Bavg}=\dfrac{1}{n} RBavg=n1越远:

在这里插入图片描述

这同样也是柯西不等式揭示的。

但是损失的带宽去哪里了呢?

这提供了思考幂律分布的另一个视角,大自然在不借助外力时是收敛到公平呢,还是收敛到高效(幂律是高效的一种表现形式,我以为)呢?

自然事件发生的世界并非一维的,这些事件在多个维度相互作用,这些作用关系被物理定律主宰,而物理定律趋向于最小约束。

维护公平就是一种强约束,因为事件本身并非均匀发生的,它们的结果便不公平。先开始的事件在某维度的积累要比后发生的事件对应的积累要多,这种积累注定无法公平,除非注入额外的能量。

自然界在时间轴上形成了自相似的分形结构,描述这种结构的就是幂律,所以,幂律选择了效率,请接受幂律。

当需要抚慰公平的时候,换用大自然的方式思考,对幂律 y = α x − λ y=\alpha x^{-\lambda} y=αxλ两边取对数:

ln ⁡ y = − λ ln ⁡ + ln ⁡ α \ln y=-\lambda\ln +\ln \alpha lny=λln+lnα

将它画在双对数坐标系,陡峭的幂律曲线就变成了直线。大自然依然是公平的,只是它有自己的公平逻辑,即:

  • 维护尺度不变性,而不是维护量不变性。

大自然兼顾了效率与公平,而我们,要学会基于双对数坐标思考。

浙江温州皮鞋湿,下雨进水不会胖。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
资源包主要包含以下内容: ASP项目源码:每个资源包中都包含完整的ASP项目源码,这些源码采用了经典的ASP技术开发,结构清晰、注释详细,帮助用户轻松理解整个项目的逻辑和实现方式。通过这些源码,用户可以学习到ASP的基本语法、服务器端脚本编写方法、数据库操作、用户权限管理等关键技术。 数据库设计文件:为了方便用户更好地理解系统的后台逻辑,每个项目中都附带了完整的数据库设计文件。这些文件通常包括数据库结构图、数据表设计文档,以及示例数据SQL脚本。用户可以通过这些文件快速搭建项目所需的数据库环境,并了解各个数据表之间的关系和作用。 详细的开发文档:每个资源包都附有详细的开发文档,文档内容包括项目背景介绍、功能模块说明、系统流程图、用户界面设计以及关键代码解析等。这些文档为用户提供了深入的学习材料,使得即便是从零开始的开发者也能逐步掌握项目开发的全过程。 项目演示与使用指南:为帮助用户更好地理解和使用这些ASP项目,每个资源包中都包含项目的演示文件和使用指南。演示文件通常以视频或图文形式展示项目的主要功能和操作流程,使用指南则详细说明了如何配置开发环境、部署项目以及常见问题的解决方法。 毕业设计参考:对于正在准备毕业设计的学生来说,这些资源包是绝佳的参考材料。每个项目不仅功能完善、结构清晰,还符合常见的毕业设计要求和标准。通过这些项目,学生可以学习到如何从零开始构建一个完整的Web系统,并积累丰富的项目经验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值