使用块的网络(VGG)

文章目录

VGG块

经典卷积神经网络的基本组成部分是下面的这个序列:

1.带填充以保持分辨率的卷积层;

2.非线性激活函数,如ReLU;

3.汇聚层,如最大汇聚层。

而一个VGG块与之类似,由一系列卷积层组成,后面再加上用于空间下采样的最大汇聚层。

import torch
from torch import nn


def vgg_block(num_convs, in_channels, out_channels): # 定义一个创捷VGG模块的函数
    layers = [] # 这个是用来放每一个层的
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels,
                                kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels # 更新下一个输入
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)


conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

# 建立所有net
def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    # 卷积层部分
    for (num_convs, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels

    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        # 全连接层部分
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))

net = vgg(conv_arch)

VGG网络可以分为两部分:第一部分主要由卷积层和汇聚层组成,第二部分由全连接层组成
在这里插入图片描述
VGG神经网络连接有几个VGG块(在vgg_block函数中定义)。其中有超参数变量conv_arch。该变量指定了每个VGG块里卷积层个数和输出通道数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值