Python+sklearn随机森林算法使用入门

3 篇文章 0 订阅
3 篇文章 0 订阅

随机森林是一种集成学习方法,基本思想是把几棵不同参数的决策树(参考:Python+sklearn决策树算法使用入门)打包到一起,每棵决策树单独进行预测,然后计算所有决策树预测结果的平均值(适用于回归分析)或所有决策树“投票”得到最终结果(适用于分类)。在随机森林算法中,不会让每棵树都生成最佳的节点,而是在每个节点上随机选择一个特征进行分裂。

扩展库sklearn在ensemble模块中提供了随机森林分类器RandomForestClassifier和随机森林回归器RandomForestRegressor。本文重点介绍随机森林分类器的用法,该类构造方法语法为

__init__(self, n_estimators=10, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None)

RandomForestRegressor类构造方法常用参数以及RandomForestRegressor类对象常用方法如下面的两个表所示。

阅读原文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dongfuguo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值