两阶段启发式算法求解带时间窗车辆路径问题(附Java代码)
1. 文档阅读说明
本文档是作者利用Java编程语言编写的启发式算法求解带时间窗车辆路径问题。包括两大部分:一是带时间窗车辆路径问题描述;二是编程算法求解代码及说明(并附录Solomon经典案例求解结果)。
2. VRPTW定义
标准的带时间窗车辆路径问题定义如下:
- 车辆从某一车场出发,服务后返回该车场;
- 每个顾客有且被一辆车服务一次;
- 服务有时间窗限制,车辆可早到,但不允许晚到;
- 车辆有最大旅行时间和容量限制;
- 所使用的车辆数不超过最大可使用车辆数量。
基于上述问题,本文档在IntelliJ IDEA平台利用Java语言进行编程,求解该车辆路径问题。主要利用贪心策略求解。核心程序的各个部分如下所示:
3. Java数据读取(附Java代码)
- 原始数据格式:以Solomon数据案例C101_25为例:
C101_25
VEHICLE
NUMBER CAPACITY
10 200
CUSTOMER
CUST NO. XCOORD. YCOORD. DEMAND READY TIME DUE DATE SERVICE TIME
0 35.00 35.00 0.00 0.00 230.00 0.00
1 41.00 49.00 10.00 161.00 171.00 10.00
2 35.00 17.00 7.00 50.00 60.00 10.00
3 55.00 45.00 13.00 116.00 126.00 10.00
……
上述是Solomon经典案例的某一个案例的原始数据,各行代表的意思如下:
第一行:案例编号
第二行:空行(注意读取数据时需要跳过,下同)
第三行:车辆信息
第四行:车辆数量 每辆车装载能力
第五行:空行
第六行:客户信息
第七行:客户编码 X坐标 Y坐标 需求量 开始服务时间 结束服务时间 服务时间
第八行之后:按照第七行顺序所列的具体客户信息
- 读取该数据的说明如下:
算法运行的前提是需要输入客户、车辆等的数据,那么如何读取这些数据呢?下面以读取Solomon数据案例C101_25为例进行说明。代码及其代码说明如下
public class Reader {
public static Instance readInstance(File file) throws FileNotFoundException {
Scanner scanner = new Scanner(file);
String line = scanner.nextLine().trim();
line = scanner.nextLine().trim();
line = scanner.nextLine().trim();
line = scanner.nextLine().trim();
line = scanner.nextLine().trim();
String [] parts = line.split("\\s+");
int nrVehicles = Integer.parseInt(parts[0]);
int capacity = Integer.parseInt(parts[1]);
line = scanner.nextLine().trim();
line = scanner.nextLine().trim();
line = scanner.nextLine().trim();
line = scanner.nextLine().trim();
//line = scanner.nextLine().trim();
int nrCustomers = 101;//根据客户数量进行修改
int duration;
int [] customerID = new int [nrCustomers];
int [][] coordinates = new int [nrCustomers][2];
int [] demands = new int [nrCustomers];
int [][] timeWindows = new int [nrCustomers][2];
int [] serviceTime = new int [nrCustomers];
int justy = 0;
for (int i = 0;i < nrCustomers;i++){
line = scanner.nextLine().trim();
parts = line.split("\\s+");
if (justy==0){
int cusID = Integer.parseInt(parts[0])-1;
int x_coor = (int)Double.parseDouble(parts[1]);
int y_coor = (int)Double.parseDouble(parts[2]);
int demand = (int)Double.parseDouble(parts[3]);
int start_Time =(int) Double.parseDouble(parts[4]);
int end_Time =(int) Double.parseDouble(parts[5]);
int service_Time =(int) Double.parseDouble(parts[6]);
customerID [i] = cusID;
coordinates[i][0] = x_coor;
coordinates[i][1] = y_coor;
demands[i] = demand;
timeWindows[i][0] = start_Time;
timeWindows[i][1] = end_Time;
serviceTime [i] = service_Time;
}else {
int cusID = Integer.parseInt(parts[0]);
int x_coor = Integer.parseInt(parts[1]);
int y_coor = Integer.parseInt(parts[2]);
int demand = Integer.parseInt(parts[3]);
int start_Time = Integer.parseInt(parts[4]);
int end_Time = Integer.parseInt(parts[5]);
int service_Time = Integer.parseInt(parts[6]);
customerID [i] = cusID;
coordinates[i][0] = x_coor;
coordinates[i][1] = y_coor;
demands[i] = demand;
timeWindows[i][0] = start_Time;
timeWindows[i][1] = end_Time;
serviceTime [i] = service_Time;
}
}
duration = timeWindows[0][1];
double [][] distanceMatrix = new double [nrCustomers][nrCustomers];
double [][] travelTimes = new double [nrCustomers][nrCustomers];
for (int i=0;i<nrCustomers;i++){
for (int j=0;j<nrCustomers;j++){
if (i!=j) {
if (i<j) {
double x = Math.pow((coordinates[i][0] - coordinates[j][0]), 2);
double y = Math.pow((coordinates[i][1] - coordinates[j][1]), 2);
distanceMatrix[i][j] = Math.sqrt(x + y);
distanceMatrix[i][j] = (int) (distanceMatrix[i][j] * 100);
distanceMatrix[i][j] = distanceMatrix[i][j] / 100;
travelTimes[i][j] = distanceMatrix[i][j];
}else {
distanceMatrix[i][j] = distanceMatrix[j][i];
travelTimes[i][j] = travelTimes[j][i];
}
}else{
distanceMatrix[i][j] = 0;
travelTimes[i][j] = 0;
}
}
}
return new Instance(file.getName(),nrCustomers,nrVehicles,duration,capacity,customerID,demands,timeWindows,distanceMatrix,travelTimes,coordinates,serviceTime);
}
}
注意:在上面的读取数据代码中,String [] parts = line.split(“\s+”); 语句需要注意你的数据间隔 是 “空格” 还是**“Tab”** 键。这两个视觉效果是一样的。不过计算机能分辨差异。当初小编初学时曾在这坑里蹲了一天。没发现错在哪里。
4. 两阶段启发式算法(附Java代码)
4.1. 基于随机贪心策略的初始解生成(附Java代码)
在读取数据之后,就可以根据这些数据进行初始解的产生,本文档利用随机贪心策略生成初始解。在介绍随机贪心策略之前,先介绍下贪心策略生成初始解方法。
在贪心策略中,一般将未被访问的客户逐个插入路径中,并对每个插入成本进行排序,选择引起成本增加最少的客户,将其插入路径中。
但是我们在实验中发现,上述策略得到的初始解较差,主要是贪心策略是一种短视的策略。因此我们利用随机贪心策略。即在排序后,保留N个最小成本的插入策略,从这N个插入策略中随机选择一个策略,并将对应客户插入路径中。利用此方法得到的初始解,经过验证比单纯的贪心策略好很多,甚至对一些30个客户的案例都能直接得到最优解。
具体Java代码如下:
package heuristicAlgorithm;
import model