1、至于yolov5后处理代码,本人使用的事rk3568中sdk中的demo。

更改/external/rknpu2/examples/rknn_yolov5_demo/include/postprocess.h
中的类别个数为自己训练的类别数(默认为80 coco数据集)。

执行 ./build-linux_RK356X.sh
编译成功后将install目录放入开发板中。
本文介绍了如何在RK3568平台上,利用NPU部署自己训练的YOLOv5模型。首先,修改SDK中的YOLOv5后处理代码,调整类别数以匹配训练模型。接着,编译并安装SDK到开发板。然后,更新模型目录中的类别标签文件。最后,设置LD_LIBRARY_PATH并运行代码,得到识别后的图片。
1、至于yolov5后处理代码,本人使用的事rk3568中sdk中的demo。

更改/external/rknpu2/examples/rknn_yolov5_demo/include/postprocess.h
中的类别个数为自己训练的类别数(默认为80 coco数据集)。

执行 ./build-linux_RK356X.sh
编译成功后将install目录放入开发板中。
1282
5141
9141
1003
474
3736
1071
3822

被折叠的 条评论
为什么被折叠?