(十二)rk3568 NPU 中部署自己训练的模型,(3)连板部署

本文介绍了如何在RK3568平台上,利用NPU部署自己训练的YOLOv5模型。首先,修改SDK中的YOLOv5后处理代码,调整类别数以匹配训练模型。接着,编译并安装SDK到开发板。然后,更新模型目录中的类别标签文件。最后,设置LD_LIBRARY_PATH并运行代码,得到识别后的图片。
摘要由CSDN通过智能技术生成

1、至于yolov5后处理代码,本人使用的事rk3568中sdk中的demo。

 

更改/external/rknpu2/examples/rknn_yolov5_demo/include/postprocess.h

中的类别个数为自己训练的类别数(默认为80 coco数据集)。

执行  ./build-linux_RK356X.sh  

编译成功后将install目录放入开发板中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DSZS123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值