82、手写的模型如何模拟权值预加载

本文介绍如何在手写模型中实现权值预加载以提高推理性能。通过预申请内存模拟GPU显存,将模型权值加载到全局变量,避免推理时重复加载,提升了模型运行速度。详细步骤包括预申请内存并加载、取用权值进行推理以及解释优化关键区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一节介绍了模型的权值预加载方法,以及为什么要做权值预加载。

对于我们自己手写的模型,如何来完成权值预加载呢?其实大概分为以下几步:

  1. 申请足够大的内存来存放模型的权值,这一步模拟的是 GPU 拥有足够的显存来存放模型权值

  2. 将模型的所有权值加载到预申请的足够大的内存中,并且保持在推理过程中,这些内存中的权值数据不变,模拟的是GPU中权值驻留在显存空间中的操作。

  3. 运行神经网络进行推理,运行到某一需要权值的层时,直接从已经申请的内存对应的位置中读取权值,然后进行推理计算。

具体到这个项目代码中,是通过以下方式来实现的。这一优化的代码目录在:cv_learning_from_scratch: 课程[CV视觉从算法到调优]代码 - Gitee.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

董董灿是个攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值