基于混淆矩阵的评估度量,代码实践,f1,auc

from sklearn.metrics import classification_report
# y_pred是预测标签
y_pred, y_true =[1,0,1,0], [0,0,1,0]
print(classification_report(y_true=y_true, y_pred=y_pred))


混淆矩阵

from sklearn.metrics import confusion_matrix
# y_pred是预测标签
y_pred, y_true =[1,0,1,0], [0,0,1,0]
c=confusion_matrix(y_true=y_true, y_pred=y_pred)
print(c)



绘制ROC曲线。

import matplotlib.pyplot as plt 
from sklearn.metrics import roc_curve, auc
# y_test:实际的标签, y_pred:预测的概率值。
y_pred, y_test =[1,1,1,0], [0,0,1,0]
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
roc_auc = auc(fpr, tpr)  
#画图,只需要plt.plot(fpr,tpr),变量roc_auc只是记录auc的值,通过auc()函数能计算出来  
plt.plot(fpr, tpr, lw=1, label='ROC(area = %0.2f)' % (roc_auc))
plt.xlabel("FPR (False Positive Rate)")
plt.ylabel("TPR (True Positive Rate)")
plt.title("Receiver Operating Characteristic, ROC(AUC = %0.2f)"% (roc_auc))
plt.show()

算分auc

from sklearn.metrics import roc_auc_score
# y_test:实际的标签, dataset_pred:预测的概率值。
y_test, dataset_pred =[1,0,1,0], [0,0,1,0]
rs=roc_auc_score(y_test, dataset_pred)
print(rs)#0.75




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值