【论文-损失函数】Learning with Average Top-k Loss

基本信息

paper: Learning with Average Top-k Loss

code: pytorch

论文思路

        该损失适用于在线难例挖掘。即在训练时选择前K个loss较大的样本进行back propagate(bp),而loss较小的样本(easy samples)则认为分类正确不用bp(loss较小可认为学会了,既然学会了就没有必要再学,也就不需要bp了),这里的前K可以是一个百分比,即前K%的hard样本,如70%,这个是MTCNN OHSM 采用的方法,注意K不能太大(论文中最佳结果是10%)否则不能达到hard sample mining的作用。训练经验而言,不用TopK loss会出现很多很难解决的误检问题; 讲道理人脑也类似,倾向于学习那些不会的问题(or novel things),对于容易解决且已经正确的问题不再去学习,也就是我们常说的有效信息变少了; 对模型而言如果全部使用分错的样本loss去bp容易按下葫芦起了瓢,topk 能有效避免这个问题。

使用评价

        Topk损失可以结合任意损失使用,论文中是结合Dice损失使用,确有难例挖掘的效果,但是要注意样本数据质量。使用中,对于分类问题可以按样本为最小单位取topk;对于语义分割问题,考虑到损失本来就是batch平均,有两种思路,一种是按样本为最小单位取topk;另一种是按像素为最小单位取topk。对于语义分割,按像素的took是更加常用的方式,也就是常说的OHEM(在线那里挖掘),其在损失函数中的添加方式具体见【损失函数】图像分割损失CELoss中添加 OHEM_there2belief的博客-CSDN博客

论文介绍

        来自于:Learning with Average Top-k Loss 论文复现 - 知乎 (zhihu.com)        

        损失是一种非常通用的聚合损失,其可以和很多现有的定义在单个样本上的损失 结合起来,如logistic损失,hinge损失,平方损失(L2),绝对值损失(L1)等等。通过引入自由度 k,损失可以更好的拟合数据的不同分布。当数据存在多分布或类别分布不均衡的时候,最小化平均损失会牺牲掉小类样本以达到在整体样本集上的损失最小;当数据存在噪音或外点的时候,最大损失对噪音非常的敏感,学习到的分类边界跟Bayes最优边界相差很大;当采取损失最为聚合损失的时候(如k=10),可以更好的保护小类样本,并且其相对于最大损失而言对噪音更加鲁棒。所以我们可以推测:最优的k即不是k = 1(对应最大损失)也不是k = n(对应平均损失),而是在[1, n]之间存在一个比较合理的k的取值区间。

        上图结合仿真数据显示了最小化平均损失和最小化最大损失分别得到的分类结果。可以看出,当数据分布不均衡或是某类数据存在典型分布和非典型分布的时候,最小化平均损失会忽略小类分布的数据而得到次优的结果;而最大损失对样本噪音和外点(outliers)非常的敏感,即使数据中仅存在一个外点也可能导致模型学到非常糟糕的分类边界;相比于最大损失损失,第k大损失对噪音更加鲁棒,但其在k > 1时非凸非连续,优化非常困难。

        由于真实数据集非常复杂,可能存在多分布性、不平衡性以及噪音等等,为了更好的拟合数据的不同分布,我们提出了平均Top-K损失作为一种新的聚合损失。

        由于数据集复杂,所以就在想一些难例挖掘的方法。看看这个方法能否带来一个更好的模型效果。该方法的主要思想是使用数值较大的排在前面的梯度进行反向传播,可以认为是一种在线难例挖掘方法,该方法使模型讲注意力放在较难学习的样本上,以此让模型产生更好的效果。代码如下所示。

class topk_crossEntrophy(nn.Layer):

    def __init__(self, top_k=0.6):
        super(topk_crossEntrophy, self).__init__()
        self.loss = nn.NLLLoss()
        self.top_k = top_k
        self.softmax = nn.LogSoftmax()
        return

    def forward(self, inputs, target):
        softmax_result = self.softmax(inputs)

        loss1 = paddle.zeros([1])
        for idx, row in enumerate(softmax_result):
            gt = target[idx]
            pred = paddle.unsqueeze(row, 0)
            cost = self.loss(pred, gt)
            loss1 = paddle.concat((loss1, cost), 0)

        loss1 = loss1[1:]
        if self.top_k == 1:
            valid_loss1 = loss1
        index = paddle.topk(loss1, int(self.top_k * len(loss1)))
        valid_loss1 = loss1[index[1]]

        return paddle.mean(valid_loss1)
  • topk_loss的主要思想
  • topk_loss的核心思想,即通过控制损失函数的梯度反传,使模型对Loss值较大的样本更加关注。该函数即为CrossEntropyLoss函数的具体实现,只不过是在计算nllloss的时候取了前70%的梯度,
  • 数学逻辑:挖掘反向传播前 70% 梯度。

代码实战

        此部分使用比赛中的数据集,并带领大家使用Top-k Loss完成模型训练。在本例中使用前70%的Loss。

!cd 'data/data107306' && unzip -q img.zip
# 导入所需要的库
from sklearn.utils import shuffle
import os
import pandas as pd
import numpy as np
from PIL import Image

import paddle
import paddle.nn as nn
from paddle.io import Dataset
import paddle.vision.transforms as T
import paddle.nn.functional as F
from paddle.metric import Accuracy

import warnings
warnings.filterwarnings("ignore")

# 读取数据
train_images = pd.read_csv('data/data107306/img/df_all.csv')

train_images = shuffle(train_images)
# 划分训练集和校验集
all_size = len(train_images)
train_size = int(all_size * 0.9)
train_image_list = train_images[:train_size]
val_image_list = train_images[train_size:]

train_image_path_list = train_image_list['image'].values
label_list = train_image_list['label'].values
train_label_list = paddle.to_tensor(label_list, dtype='int64')

val_image_path_list = val_image_list['image'].values
val_label_list1 = val_image_list['label'].values
val_label_list = paddle.to_tensor(val_label_list1, dtype='int64')

# 定义数据预处理
data_transforms = T.Compose([
    T.Resize(size=(448, 448)),

    T.Transpose(),    # HWC -> CHW
    T.Normalize(

        mean = [0, 0, 0],
        std = [255, 255, 255],
        to_rgb=True)    
])
# 构建Dataset
class MyDataset(paddle.io.Dataset):
    """
    步骤一:继承paddle.io.Dataset类
    """
    def __init__(self, train_img_list, val_img_list,train_label_list,val_label_list, mode='train'):
        """
        步骤二:实现构造函数,定义数据读取方式,划分训练和测试数据集
        """
        super(MyDataset, self).__init__()
        self.img = []
        self.label = []
        self.valimg = []
        self.vallabel = []
        # 借助pandas读csv的库
        self.train_images = train_img_list
        self.test_images = val_img_list
        self.train_label = train_label_list
        self.test_label = val_label_list
        # self.mode = mode
        if mode == 'train':
            # 读train_images的数据
            for img,la in zip(self.train_images, self.train_label):
                self.img.append('data/data107306/img/imgV/'+img)
                self.label.append(la)
        else :
            # 读test_images的数据
            for img,la in zip(self.test_images, self.test_label):
                self.img.append('data/data107306/img/imgV/'+img)
                self.label.append(la)

    def load_img(self, image_path):
        # 实际使用时使用Pillow相关库进行图片读取即可,这里我们对数据先做个模拟
        image = Image.open(image_path).convert('RGB')
        image = np.array(image).astype('float32')
        return image

    def __getitem__(self, index):
        """
        步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签)
        """
        # if self.mode == 'train':

        image = self.load_img(self.img[index])
        label = self.label[index]

        return data_transforms(image), label

    def __len__(self):
        """
        步骤四:实现__len__方法,返回数据集总数目
        """
        return len(self.img)
#train_loader
train_dataset = MyDataset(train_img_list=train_image_path_list, val_img_list=val_image_path_list, train_label_list=train_label_list, val_label_list=val_label_list, mode='train')
train_loader = paddle.io.DataLoader(train_dataset, places=paddle.CPUPlace(), batch_size=4, shuffle=True, num_workers=0)

#val_loader
val_dataset = MyDataset(train_img_list=train_image_path_list, val_img_list=val_image_path_list, train_label_list=train_label_list, val_label_list=val_label_list, mode='test')
val_loader = paddle.io.DataLoader(val_dataset, places=paddle.CPUPlace(), batch_size=4, shuffle=True, num_workers=0)
from res2net import Res2Net50_vd_26w_4s

# 模型封装
model_re2 = Res2Net50_vd_26w_4s(class_dim=4)
import paddle.nn.functional as F
import paddle
modelre2_state_dict = paddle.load("Res2Net50_vd_26w_4s_pretrained.pdparams")

model_re2.set_state_dict(modelre2_state_dict, use_structured_name=True)
model_re2.train()
epochs = 2

optim1 = paddle.optimizer.Adam(learning_rate=3e-4, parameters=model_re2.parameters())
class topk_crossEntrophy(nn.Layer):

    def __init__(self, top_k=0.7):
        super(topk_crossEntrophy, self).__init__()
        self.loss = nn.NLLLoss()
        self.top_k = top_k
        self.softmax = nn.LogSoftmax()
        return

    def forward(self, inputs, target):
        softmax_result = self.softmax(inputs)

        loss1 = paddle.zeros([1])
        for idx, row in enumerate(softmax_result):
            gt = target[idx]
            pred = paddle.unsqueeze(row, 0)
            cost = self.loss(pred, gt)
            loss1 = paddle.concat((loss1, cost), 0)

        loss1 = loss1[1:]
        if self.top_k == 1:
            valid_loss1 = loss1
        # print(len(loss1))
        index = paddle.topk(loss1, int(self.top_k * len(loss1)))
        valid_loss1 = loss1[index[1]]

        return paddle.mean(valid_loss1)

topk_loss = topk_crossEntrophy()
from numpy import *
# 用Adam作为优化函数
for epoch in range(epochs):

    loss1_train = []
    loss2_train = []
    loss_train = []

    acc1_train = []
    acc2_train = []
    acc_train = []
    for batch_id, data in enumerate(train_loader()):

        x_data = data[0]
        y_data = data[1]
        y_data1 = paddle.topk(y_data, 1)[1]
        predicts1 = model_re2(x_data)

        loss1 = topk_loss(predicts1, y_data1)

        # 计算损失
        acc1 = paddle.metric.accuracy(predicts1, y_data)

        loss1.backward()

        if batch_id % 1 == 0:
            print("epoch: {}, batch_id: {}, loss1 is: {}, acc1 is: {}".format(epoch, batch_id, loss1.numpy(), acc1.numpy()))



        optim1.step()
        optim1.clear_grad()


    loss1_eval = []
    loss2_eval = []
    loss_eval = []
    acc1_eval = []
    acc2_eval = []
    acc_eval = []
    for batch_id, data in enumerate(val_loader()):
        x_data = data[0]
        y_data = data[1]

        y_data1 = paddle.topk(y_data, 1)[1]

        predicts1 = model_re2(x_data)

        loss1 = topk_loss(predicts1, y_data1)
        loss1_eval.append(loss1.numpy())

        # 计算acc
        acc1 = paddle.metric.accuracy(predicts1, y_data)
        acc1_eval.append(acc1)

        if batch_id % 100 == 0:
            print('************Eval Begin!!***************')
            print("epoch: {}, batch_id: {}, loss1 is: {}, acc1 is: {}".format(epoch, batch_id, loss1.numpy(), acc1.numpy()))

            print('************Eval End!!***************')

总结

  • 在该工作中,分析了平均损失和最大损失等聚合损失的优缺点,并提出了平均Top-K损失(损失)作为一种新的聚合损失,其包含了平均损失和最大损失并能够更好的拟合不同的数据分布,特别是在多分布数据和不平衡数据中。损失降低正确分类样本带来的损失,使得模型学习的过程中可以更好的专注于解决复杂样本,并由此提供了一种保护小类数据的机制。损失仍然是原始损失的凸函数,具有很好的可优化性质。我们还分析了损失的理论性质,包括classification calibration等。
  • Top-k loss 的参数设置为1时,此损失函数将变cross_entropy损失,对其进行测试,结果与原始cross_entropy()完全一样。但是我在实际的使用中,使用此损失函数却没使模型取得一个更好的结果。需要做进一步的实验。
### 回答1: calc_loss通常指的是计算模型的损失函数(loss function)。具体实现方式因不同模型和任务而异,以下是一些常见的计算损失函数的方法: 1. 交叉熵损失函数(Cross-entropy Loss):适用于分类任务,常用于神经网络模型中。公式为:$L=-\frac{1}{N}\sum_{i=1}^{N}y_i\log(\hat{y_i})+(1-y_i)\log(1-\hat{y_i})$,其中 $y_i$ 为真实标签, $\hat{y_i}$ 为预测标签。 2. 均方误差损失函数(Mean Squared Error Loss):适用于回归任务,常用于线性回归模型中。公式为:$L=\frac{1}{N}\sum_{i=1}^{N}(y_i-\hat{y_i})^2$,其中 $y_i$ 为真实值, $\hat{y_i}$ 为预测值。 3. 对数似然损失函数(Log-likelihood Loss):适用于分类任务,常用于逻辑回归模型中。公式为:$L=-\frac{1}{N}\sum_{i=1}^{N}[y_i\log(\hat{y_i})+(1-y_i)\log(1-\hat{y_i})]$,其中 $y_i$ 为真实标签, $\hat{y_i}$ 为预测标签。 4. 推荐系统中的 Top-K 排序损失函数(Top-K Ranking Loss):适用于推荐系统中的排序任务,常用于协同过滤模型中。公式为:$L=\sum_{i=1}^{N}\sum_{j=1}^{K}[\max(0,1-(s_{ij}-s_{ik}))+\max(0,1-(s_{ij}-s_{kl}))]$,其中 $s_{ij}$ 表示用户 $i$ 对物品 $j$ 的评分, $s_{ik}$ 表示用户 $i$ 对物品 $k$ 的评分, $s_{kl}$ 表示用户 $k$ 对物品 $l$ 的评分。 以上仅是一些常见的损失函数计算方法,具体的实现方式还需要根据具体场景和模型来选择。 ### 回答2: calc_loss一般是在机器学习和深度学习等任务中使用的函数,用于计算损失函数的值。损失函数是衡量模型在训练过程中预测结果与真实结果之间差异的指标,通常是一种数值化的评估手段。 实现calc_loss的方式具体取决于所使用的算法和任务。一般来说,实现calc_loss的步骤包括: 1. 定义损失函数:根据具体任务的需求,选择合适的损失函数,例如均方误差(MSE)、交叉熵等。损失函数的选择应考虑到任务类型、样本分布以及模型的特性等因素。 2. 根据模型输出和真实标签计算差异:根据损失函数的定义,计算模型的预测结果与真实标签之间的差异。这一步通常涉及到模型输出结果的处理,例如将预测结果转化为概率分布、进行标签编码等。 3. 汇总计算结果:根据损失函数的定义,将各个样本或者批次的差异进行汇总,得到模型在该批次或整个数据集上的损失值。常见的汇总方式包括求和、平均等。 4. 可选步骤:除了基本的损失函数计算,calc_loss还可以包括其他的辅助计算,如正则化项、权重衰减等。这些操作可用于提高模型的鲁棒性或减小过拟合的风险。 总之,calc_loss的实现方式需要根据具体任务和模型的特点来设计。在实际应用中,根据损失函数的定义和算法需求,经验丰富的研究者和工程师经常会进行创新和优化,以提高模型的性能和训练效果。 ### 回答3: 在机器学习或深度学习模型中,通常需要定义一个损失函数loss function)来评估模型的输出和实际标签之间的误差。而calc_loss的实现即计算损失函数的数值。 calc_loss的实现流程一般如下: 1. 根据具体任务选择合适的损失函数。不同任务可能适合不同的损失函数,例如分类问题可以选择交叉熵损失函数,回归问题可以选择均方误差损失函数等。 2. 获取模型的预测值和真实标签。根据任务的不同,可以通过模型输出、概率分布或回归值来获取预测结果,并将其与真实标签进行对比。 3. 计算损失值。根据选择的损失函数,将预测值和真实标签作为输入,计算损失函数的数值。不同的损失函数有各自的计算方式,例如交叉熵损失函数可以使用log函数和矩阵运算来计算,均方误差损失函数计算方式为预测值与真实标签的平方差。 4. 返回损失值。将计算得到的损失值返回给调用者,供模型进行参数更新或其他操作。 calc_loss的实现需要根据具体情况选择合适的损失函数,并按照损失函数的计算方式进行相应的数值计算。它是机器学习或深度学习模型评估和优化的重要组成部分,能够帮助模型更好地适应训练数据并提高其泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值