GBDT与决策树的差异

GBDT与单一决策树不同,即使不限制参数,因为GBDT通过迭代修正残差逐步逼近最优解,而单一决策树一次性建树。多次迭代能避免过拟合,增大学习率可能导致次优解。GBDT相比剪枝决策树,通过迭代逼近损失函数的最优解,通常性能更优。
摘要由CSDN通过智能技术生成

GBDT是拟合伪残差,如果不限制GBDT中建树时的任何参数(max_depth等相关参数为决策树默认),是不是GBDT的结果就和单一决策树是相同的了?

GBDT为什么需要多轮迭代,GBDT每次迭代建树的方向都是损失函数下降最快的方向,也就是负梯度(伪残差)的方向,什么不能通过增大学习率来使得迭代只有一次。简单来说就是多次迭代的GBDT和一次建成有剪枝的决策树差别在哪里?GBDT为什么需要迭代?
该回答引用ChatGPT GBDT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值