keras.optimizers.Adam()

在监督学习中我们使用梯度下降法时,学习率是一个很重要的指标,因为学习率决定了学习进程的快慢(也可以看作步幅的大小)。如果学习率过大,很可能会越过最优值,反而如果学习率过小,优化的效率可能很低,导致过长的运算时间,所以学习率对于算法性能的表现十分重要。

而优化器keras.optimizers.Adam()是解决这个问题的一个方案。其大概的思想是开始的学习率设置为一个较大的值,然后根据次数的增多,动态的减小学习率,以实现效率和效果的兼得。
 

keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.99, epsilon=1e-08, decay=0.0)

lr:float> = 0.学习率

beta_1:float,0 <beta <1。一般接近1。一阶矩估计的指数衰减率

beta_2:float,0 <beta <1。一般接近1。二阶矩估计的指数衰减率

epsilon:float> = 0,  模糊因子。如果None,默认为K.epsilon(  )。该参数是非常小的数,其为了防止在实现中除以零

decay:float> = 0,  每次更新时学习率下降

from keras.optimizers import Adam

optimizer = Adam(lr=0.001)  # 创建Adam优化器实例,设置初始学习率lr为0.001

model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
# 编译模型时指定优化器为Adam,并设置损失函数和评估指标

model.fit(x_train, y_train, epochs=10, batch_size=32)
# 使用Adam优化器训练模型

在上面的示例中,我们首先创建了一个Adam优化器的实例,并通过lr参数设置初始学习率。然后,我们将该优化器实例传递给model.compile()方法作为优化器参数,同时指定了损失函数和评估指标。最后,在模型的训练过程中,我们可以直接使用该优化器进行参数更新。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能教学实践

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值