tf.keras.optimizers.Adam函数

本文详细介绍了TensorFlow中Adam优化器的函数用法,包括其参数学习率、beta_1、beta_2和epsilon的作用。默认设置为beta_1=0.9, beta_2=0.999, epsilon=1e-07。通过(optimizer=tf.keras.optimizers.Adam(0.001))创建实例,并使用(optimizer.apply_gradients(zip(gradients, elmo.trainable_variables)))进行参数更新。理解优化器对于深度学习模型的训练至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

函数原型
tf.keras.optimizers.Adam(
    learning_rate=0.001,
    beta_1=0.9,
    beta_2=0.999,
    epsilon=1e-07,
    amsgrad=False,
    name='Adam',
    **kwargs
)
函数说明

Adam函数定义了参数更新的方式,模型参数 θ \theta θ的具体更新过程如下所示:
在这里插入图片描述
参数leanrning_rate对应于学习率或者步长 α \alpha α;参数beta_1,beta_2对应于 β 1 \beta_1 β1 β 2 \beta_2 β2,表示梯度的带权平均和带权方差,初始为0向量;参数epsilon对应于 ϵ \epsilon ϵ

建议参数 β 1 \beta_1 β1=0.9, β 2 \beta_2 β2=0.99, ϵ \epsilon ϵ=10^-8。针对特定问题,需要结合数值选择合适的算法。

函数使用
# 优化器adam
optimizer = tf.keras.optimizers.Adam(0.001)
# 应用梯度,这里会可以更新的参数应用梯度,进行参数更新
optimizer.apply_gradients(zip(gradients, elmo.trainable_variables)) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不负韶华ღ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值