基于AUKF算法的锂离子电池SOC估计:一种自适应无迹卡尔曼滤波算法的应用

本文探讨了电动汽车领域中锂离子电池SOC估计的挑战,提出采用自适应无迹卡尔曼滤波算法(AUKF)进行精确估计。实验结果显示AUKF在提高估计精度和适应性方面表现出色,为电池管理系统(BMS)提供了一种有效解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于自适应无迹卡尔曼滤波算法(AUKF)锂离子电池荷电状态SOC估计。

ID:3659724626820831

BMS算法爱好者


标题:基于自适应无迹卡尔曼滤波算法的锂离子电池荷电状态SOC估计

摘要:随着电动汽车等领域的快速发展,锂离子电池作为重要的能源储存装置之一,其荷电状态(State of Charge,SOC)估计的准确性变得越来越重要。本文基于自适应无迹卡尔曼滤波算法(Adaptive Unscented Kalman Filter,AUKF),对锂离子电池的SOC进行估计。通过对实际测试数据的分析,证明了AUKF算法在SOC估计方面的优越性和有效性。

关键词:锂离子电池;荷电状态(SOC)估计;自适应无迹卡尔曼滤波算法(AUKF)

1.引言
电动汽车等能源领域的发展对锂离子电池荷电状态(State of Charge,SOC)估计提出了更高的要求。准确的SOC估计能够提高电池系统的可靠性、增强对电池工作状态的了解,并有效延长电池的寿命。然而,由于电池的非线性、不确定性以及不可观测性等因素,SOC估计面临着一定的挑战。因此,本文提出了一种基于自适应无迹卡尔曼滤波算法(A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值