基于自适应无迹卡尔曼滤波算法(AUKF)锂离子电池荷电状态SOC估计。
ID:3659724626820831
BMS算法爱好者
标题:基于自适应无迹卡尔曼滤波算法的锂离子电池荷电状态SOC估计
摘要:随着电动汽车等领域的快速发展,锂离子电池作为重要的能源储存装置之一,其荷电状态(State of Charge,SOC)估计的准确性变得越来越重要。本文基于自适应无迹卡尔曼滤波算法(Adaptive Unscented Kalman Filter,AUKF),对锂离子电池的SOC进行估计。通过对实际测试数据的分析,证明了AUKF算法在SOC估计方面的优越性和有效性。
关键词:锂离子电池;荷电状态(SOC)估计;自适应无迹卡尔曼滤波算法(AUKF)
1.引言
电动汽车等能源领域的发展对锂离子电池荷电状态(State of Charge,SOC)估计提出了更高的要求。准确的SOC估计能够提高电池系统的可靠性、增强对电池工作状态的了解,并有效延长电池的寿命。然而,由于电池的非线性、不确定性以及不可观测性等因素,SOC估计面临着一定的挑战。因此,本文提出了一种基于自适应无迹卡尔曼滤波算法(A