MATLAB创新性滤波例程分享
文章平均质量分 87
MATLAB下的自适应卡尔曼滤波、平方根卡尔曼滤波、改进卡尔曼滤波、改进粒子滤波、频域滤波、中值滤波等的创新性滤波方法
余额抵扣
助学金抵扣
还需支付
¥49.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
MATLAB卡尔曼
所有代码如运行有问题,可私信博主
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《MATLAB创新性滤波算法》专栏目录,持续更新中……
MATLAB创新性滤波算法》专栏旨在分享具有一定创新性的滤波方法,并配有适当的MATLAB例程供读者参考。为了保证一定的新颖性、创新性,在编辑时耗费了大量的时间和精力,因此设置为付费专栏,以下是专栏的目录。原创 2024-12-30 08:43:07 · 782 阅读 · 0 评论
-
【MATLAB代码】线性卡尔曼滤波与RTS平滑,背景为速度和位置的估计,附观测、仅滤波、滤波+平滑后的误差特性对比。订阅专栏后可查看完整代码
线性卡尔曼滤波(KF)与RTS平滑算法,验证了RTS平滑通过前向滤波与后向平滑的两级处理,能有效提升状态估计精度。源代码可直接运行复现结果。原创 2026-01-16 10:10:58 · 128 阅读 · 0 评论 -
【MATLAB代码】结合IMU(加速度计、陀螺仪)的噪声特性、使用维纳滤波(Wiener Filtering)优化IMU的性能,给出滤波前后的对比|附完整代码
本文介绍了一个完整的IMU传感器噪声仿真与去噪系统MATLAB实现。该系统模拟了加速度计和陀螺仪的典型噪声特性(包括白噪声、偏置不稳定性等),并采用频域维纳滤波方法进行信号优化。实验结果显示,维纳滤波显著降低了信号噪声:加速度计RMSE改善率达[具体数值]%,陀螺仪改善率达[具体数值]%。代码提供了完整的噪声分析、滤波实现和性能评估流程,可直接运行并可视化滤波前后的信号对比及误差分析。该方案为IMU数据预处理提供了有效的噪声抑制方法。原创 2025-12-22 07:28:34 · 368 阅读 · 0 评论 -
【MATLAB代码】互补滤波,融合磁力计与陀螺仪数据,估计航向。给出融合前后的角度估计误差、误差曲线
本文提出一种基于MATLAB的传感器数据融合系统,通过互补滤波器算法(α=0.98)融合磁力计和陀螺仪数据,实现高精度航向角估计。系统模拟IMU在实际应用中的姿态解算过程,包含多传感器数据生成(陀螺仪零偏0.5°/s、噪声2°/s;磁力计噪声5°)、互补滤波融合(融合公式:航向角(k)=α×[航向角(k-1)+陀螺仪角速度×Δt]+(1-α)×磁力计航向角)和性能分析模块。实验结果显示,互补滤波算法(RMSE 2.12度)相比单独使用磁力计(RMSE 5.72度)或陀螺仪积分(RMSE 13.07度)显著提原创 2025-11-07 09:51:36 · 215 阅读 · 0 评论 -
【自适应粒子滤波 代码】Sage Husa自适应粒子滤波,用于克服初始Q和R不准确的问题,一维非线性滤波。附有完整的MATLAB代码
本文提出了一种Sage Husa自适应粒子滤波方法,用于解决初始噪声协方差矩阵Q和R不准确导致的滤波误差问题。通过一维非线性状态和观测模型,验证了算法的有效性。MATLAB仿真结果表明:自适应粒子滤波能准确估计观测噪声协方差R,其状态估计误差(RMSE=0.5636)明显优于传统粒子滤波(RMSE=1.1886)和未滤波结果(RMSE=1.0007)。算法采用遗忘因子实现噪声协方差的动态更新,并提供了完整的可运行代码。误差对比曲线和噪声估计曲线直观展示了算法的优越性能,为非线性系统的状态估计提供了有效解决方原创 2025-10-20 09:55:37 · 320 阅读 · 0 评论 -
【MATLAB代码】自适应渐消卡尔曼滤波-EKF - 二维雷达目标跟踪,附完整代码,订阅专栏后可查看
本文提出了一种基于自适应渐消卡尔曼滤波(AFEKF)的二维雷达目标跟踪方法。通过在标准EKF中引入渐消因子λ_k动态调整预测协方差矩阵,使滤波器在机动阶段快速响应状态变化,在平稳阶段保持估计稳定性。仿真结果显示,AFEKF相比标准EKF显著降低了跟踪误差(RMSE从1.79m降至1.56m),尤其在目标机动阶段表现出更优的跟踪性能。该方法通过实时调整渐消因子(1.0-2.0范围)自适应处理不同运动状态,有效解决了固定参数滤波器在机动目标跟踪中的性能下降问题。原创 2025-10-16 10:52:21 · 518 阅读 · 0 评论 -
【自适应滤波】自适应UKF,基于新息自适应调节Q和R,场景为雷达跟踪与滤波、MATLAB实现
本文提出了一种基于新息协方差匹配的自适应UKF(CM-AUKF)算法,用于解决噪声统计未知或时变场景下的目标跟踪问题。通过实时调整过程噪声协方差Q和观测噪声协方差R,CM-AUKF显著提升了跟踪精度和稳定性。仿真结果表明,相比传统UKF,CM-AUKF在位置和速度估计误差上分别降低了约50%和30%,且无需人工调参。该算法适用于无人机导航、雷达跟踪等动态环境,MATLAB代码可直接运行复现结果。自适应曲线显示算法能有效收敛到真实噪声参数,验证了其自适应能力。原创 2025-10-11 10:35:42 · 234 阅读 · 0 评论 -
【自适应滤波】基于新息的自适应QR调节,自适应容积卡尔曼滤波(ACKF),附完整代码,订阅专栏后可查看
本文提出了一种基于新息协方差匹配的自适应CKF算法(CM-ACKF),用于智能雷达目标跟踪系统。该算法通过容积卡尔曼滤波器(CKF)处理非线性观测,并创新性地采用新息协方差匹配技术自动调整噪声参数。仿真结果表明,即使在初始参数设置不准确的情况下,CM-ACKF仍能自动收敛到最优状态,相比传统CKF方法具有更高的跟踪精度。文中提供了完整的MATLAB实现代码,包括轨迹对比、误差曲线分析等可视化结果,验证了算法的有效性和鲁棒性。该方案为复杂环境下的目标跟踪问题提供了有效的解决方案。原创 2025-10-10 10:03:50 · 270 阅读 · 0 评论 -
【自适应滤波】基于新息协方差匹配的自适应EKF (CM-AEKF) vs 经典EKF对比,附MATLAB代码
本文提出了一种基于新息协方差匹配的自适应扩展卡尔曼滤波(CM-AEKF)算法,并与经典EKF进行对比。在二维平面匀速运动场景下,系统状态为[x, vx, y, vy],观测数据通过雷达测距和测角获得。仿真结果表明,CM-AEKF通过滑动窗口计算实际新息协方差,动态调整过程噪声Q和观测噪声R,相比固定参数的经典EKF,能有效降低状态估计误差。轨迹图和误差曲线显示,CM-AEKF在x、y轴位移估计上具有更优性能。该算法特别适用于系统噪声统计特性未知或时变的场景。MATLAB源代码可直接运行复现结果。原创 2025-10-08 10:14:04 · 716 阅读 · 0 评论 -
【Sage-Husa自适应 三维EKF】Sage-Husa 自适应扩展卡尔曼滤波在三维非线性系统中的应用,MATLAB代码示例。订阅专栏后可直接查看完整代码
本文展示了Sage-Husa自适应EKF算法在三维非线性系统中的应用效果。通过在线估计过程噪声Q和观测噪声R的协方差矩阵,该算法能有效适应实际环境中的不确定性。仿真结果表明:1)标准EKF和Sage-Husa EKF相比未滤波状态具有明显优势;2)Sage-Husa自适应版本通过遗忘因子(b=0.95)动态调整QR矩阵,进一步提升了滤波精度;3)算法采用特征值分解保证协方差矩阵的正定性(阈值1e-6)。MATLAB代码提供了完整实现,包含三维非线性运动模型和自适应噪声估计模块,可直接运行验证。原创 2025-10-06 10:33:48 · 525 阅读 · 0 评论 -
【SageHusa EKF 二维】Sage Husa自适应下的EKF(扩展卡尔曼滤波)例程,二维、非线性的的状态量和观测量。附完整代码
本文对比研究了标准扩展卡尔曼滤波器(EKF)和Sage-Husa自适应扩展卡尔曼滤波器(SH-EKF)在二维非线性系统中的状态估计性能。通过MATLAB仿真实验,结果表明:在噪声统计特性不确定的情况下,SH-EKF算法能自适应调节QR参数,显著提升滤波精度。误差分析显示,SH-EKF的各轴误差明显小于标准EKF和未滤波状态,验证了自适应算法在非线性系统中的优越性。研究提供了完整的MATLAB实现代码,可直接运行复现结果。原创 2025-09-30 10:10:13 · 411 阅读 · 0 评论 -
【MATLAB代码】滑动窗口均值滤波、中值滤波、最小值/最大值滤波对比。订阅专栏后可查看完整代码
本文对比了滑动窗口均值滤波、中值滤波、最小值/最大值滤波的处理效果和性能。通过MATLAB实验,展示了四种滤波方法对含噪正弦信号的去噪效果,并比较了它们的计算时间和RMSE误差指标。结果显示,均值滤波在保持信号特征方面表现最佳,而中值滤波对脉冲噪声更有效。实验还分析了窗口大小对处理时间的影响,为实际应用提供了参考依据。代码可直接运行,包含信号生成、滤波实现和可视化功能。原创 2025-08-14 22:31:24 · 142 阅读 · 0 评论 -
【MATLAB代码】滑动窗口滤波代码示例,用于计算量小、存储成本低的场景。附完整代码
本例程演示了如何在一维信号中应用**固定长度滑动窗口的平均滤波方法**,以实现对高频噪声的抑制和信号平滑处理。该方法特别适用于高频采样或大数据流场景,具有计算量低、实现简便的优势。原创 2025-08-11 07:41:12 · 416 阅读 · 0 评论 -
【MATLAB代码】自适应调节窗口长度的滑动窗口滤波,附带固定长度的对比(图像与误差统计特性的对比),给出完整代码,可直接粘贴到MATLAB脚本上并运行
本文介绍了一种自适应窗口长度的滑动平均滤波器,通过动态调整窗口大小来优化信号平滑效果。该方法根据信号局部标准差自动选择窗口长度:在平稳区域使用较大窗口增强平滑,在变化剧烈处采用小窗口保留细节。MATLAB仿真结果表明,相比固定窗口方法,自适应滤波能更好地平衡噪声抑制和细节保留,误差更小。文中提供了完整的实现代码和三种滤波结果对比图(原始信号、固定窗口5/21点、自适应滤波),以及窗口长度自适应变化曲线,直观展示了算法的优势。原创 2025-08-11 07:40:35 · 416 阅读 · 0 评论 -
【matlab代码】无迹粒子滤波(UPF)的例程,用于三维环境下多雷达目标跟踪,非线性系统|附完整的代码
本文提出了一种基于无迹粒子滤波(UPF)的三维目标跟踪算法,通过融合IMU和雷达观测数据实现运动目标的高精度跟踪。算法采用非线性测量模型处理距离和角度观测,利用多观测站数据提高定位精度。仿真结果表明,该方法能有效跟踪非匀速运动目标,三维位置RMSE为2.1m,速度RMSE为1.7m/s。实验数据包含轨迹图、误差曲线和统计特性分析,验证了算法在复杂运动场景下的鲁棒性。MATLAB源代码完整实现,可直接运行复现结果。原创 2025-07-30 09:57:36 · 409 阅读 · 0 评论 -
【matlab例程】无迹粒子滤波(UPF)原理与代码解析。一维环境下的简单例程,结构简单、便于理解|附完整的代码|ver2
本文实现了一维运动目标跟踪的无迹粒子滤波(UPF)算法,通过融合运动模型与带噪声观测数据来优化目标位置估计。代码采用MATLAB实现,包含状态转移模型、测量模型和100个粒子的权重更新系统。实验结果显示,UPF估计位置(红色虚线)比直接观测(蓝色虚线)更接近真实轨迹(绿色实线)。误差统计表明,UPF估计的均值和标准差显著优于直接观测,验证了算法在噪声环境下的有效性。关键步骤包括Sigma点生成、状态预测、权重更新和系统重采样,最终输出滤波前后的状态对比曲线和误差时序曲线。原创 2025-07-29 09:49:55 · 262 阅读 · 0 评论 -
【互补滤波】加速度计与陀螺仪数据的互补滤波,用于估计角度,公式分析与MATLAB例程
该MATLAB程序实现了互补滤波器(Complementary Filter)用于融合陀螺仪和加速度计数据,以估计物体姿态角。程序通过仿真生成陀螺仪和加速度计的噪声数据,对比展示了仅陀螺仪积分、仅加速度计测量以及互补滤波融合三种方法的性能差异。结果显示互补滤波器能有效结合陀螺仪的高频响应特性和加速度计的低频稳定性,显著降低姿态估计误差(RMSE)。程序还分析了不同滤波系数α的影响,并提供了频率特性曲线,直观展示了滤波器的工作原理。订阅后可获取完整代码,直接运行即可复现实验结果。原创 2025-07-17 09:33:12 · 735 阅读 · 0 评论 -
【MATLAB代码】温湿度多传感器滤波,使用卡尔曼滤波对多个温度传感器和湿度传感器的数值进行滤波,滤波结果输出图像,并于平均值的误差进行对比,附完整代码
本文提出一种基于卡尔曼滤波的多传感器温湿度数据融合方法,通过MATLAB实现4个温度传感器和5个湿度传感器的动态数据滤波。仿真结果显示,卡尔曼滤波较传统均值法显著降低误差(温度RMSE 0.35 vs 0.42,湿度RMSE 0.72 vs 0.89)。算法包含状态预测、多传感器迭代更新环节,有效抑制噪声和漂移,并提供实时融合接口。可视化曲线和柱状图直观对比了滤波效果,验证了该方法在硬件在线应用中的可行性,为多传感器系统提供了一种高精度的动态补偿方案。原创 2025-07-15 09:51:56 · 439 阅读 · 0 评论 -
【matlab代码】轨迹漂移时,利用终点位置的轨迹校正,matlab例程,可用于降低惯导漂移带来的误差,适用于三维空间|附完整代码
本文所述的代码可用于模拟和校正三维惯性导航系统(INS)的轨迹漂移问题。通过线性分配终点误差,实现对累积漂移的补偿。为INS漂移提供一个非滤波的思路。原创 2025-06-27 10:26:01 · 347 阅读 · 0 评论 -
基于Versoria函数优化协方差更新的改进扩展卡尔曼滤波(MVC-EKF)与经典EKF的对比,附matlab源代码|订阅专栏后可查看完整代码
本代码实现了基于Versoria函数优化协方差更新的改进扩展卡尔曼滤波(MVC-EKF),并与传统扩展卡尔曼滤波(EKF)进行对比。代码通过一维非线性运动模型仿真,展示了MVC-EKF在处理含异常值观测数据时的鲁棒性优势,适用于目标跟踪、导航定位等状态估计场景。原创 2025-06-27 10:25:00 · 173 阅读 · 0 评论 -
【MATLAB代码】 基于MVC(Max Versoria Criterion)的EKF和经典EKF的对比,例程用于二维平面的运动估计,订阅专栏后可直接获得完整源代码
本文提出一种基于Versoria函数改进的扩展卡尔曼滤波(MVC-EKF)算法,通过引入Versoria函数权重调整机制,有效提升传统EKF在非高斯噪声条件下的鲁棒性。仿真实验通过二维运动状态估计,对比了MVC-EKF与传统EKF的性能。结果显示:在存在异常噪声干扰时,MVC-EKF的均方根误差降低约30%,峰值误差减少50%,表现出更强的抗干扰能力。误差曲线表明,MVC-EKF对测量异常值具有更好的鲁棒性,验证了该算法在处理非高斯噪声方面的优势。原创 2025-06-26 09:46:32 · 145 阅读 · 0 评论 -
【MATLAB代码】基于MVC的EKF和经典EKF对三维非线性状态的滤波,提供滤波值对比、误差对比,应对跳变的观测噪声进行优化。订阅专栏后可直接查看完整代码
本文实现了一种基于Versoria函数的改进扩展卡尔曼滤波算法(MVC-EKF),用于三维运动状态估计。通过引入Versoria函数优化协方差更新过程,算法在测量值存在异常干扰(10-30时间步)时表现出更强的鲁棒性。与经典EKF相比,MVC-EKF的估计误差显著降低,尤其在异常值干扰时段保持更稳定的性能。仿真结果显示,改进算法在三维状态估计中各维度误差均优于传统方法,验证了其抗干扰能力。代码可直接在MATLAB中运行,包含完整的状态曲线对比和误差分析模块。原创 2025-06-25 10:48:44 · 71 阅读 · 0 评论 -
【MATLAB代码】三维IEKF(迭代扩展卡尔曼滤波),应对观测协方差矩阵不准确时的高精度滤波,与未滤波、经典EKF的对比,非线性状态方程与观测方程
本文提出了一种三维迭代扩展卡尔曼滤波(IEKF)算法,用于非线性系统的状态估计。通过MATLAB仿真验证了该算法在观测噪声协方差矩阵不准确情况下的性能。结果表明,IEKF相较于传统EKF具有更高的估计精度,其均方误差明显降低。程序实现了状态预测、迭代更新和收敛检测等核心功能,并提供了三轴状态估计、误差对比及统计特性的可视化分析。该算法通过动态线性化和牛顿-拉夫森迭代优化了状态估计过程,在非线性系统中表现出更好的收敛性和鲁棒性。原创 2025-06-23 10:42:22 · 697 阅读 · 0 评论 -
【MATLAB代码】 基于MVC(Max Versoria Criterion)和MCC的EKF,两种算法对比,例程用于二维平面的运动估计,订阅专栏后可直接获得完整源代码
本文提出了一种基于Versoria函数(MVC)和最大相关熵准则(MCC)的扩展卡尔曼滤波(EKF)算法,用于解决二维平面运动目标跟踪中的非高斯噪声问题。通过MATLAB仿真对比了EKF、MCC-EKF和MVC-EKF三种算法的性能。结果显示,在存在观测异常值干扰的情况下,MVC和MCC方法均能有效提高状态估计的鲁棒性,其中MVC-EKF表现更优。实验包含100个时间步的仿真,在10-30步间加入强噪声模拟异常干扰,验证了算法在非理想观测条件下的有效性。原创 2025-06-21 10:48:27 · 153 阅读 · 0 评论 -
【python】基于MCC(最大相关熵)的卡尔曼滤波的python代码,一维滤波,应对观测数据突变,附完整代码
本代码实现了最大相关熵卡尔曼滤波(MCC-KF)与经典卡尔曼滤波(KF)的对比仿真,重点验证MCC-KF在存在异常观测值场景下的鲁棒性改进。通过高斯核函数动态加权残差,MCC-KF能有效抑制异常值对状态估计的影响。原创 2025-06-09 11:12:26 · 392 阅读 · 0 评论 -
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优势。原创 2025-06-09 11:09:41 · 1038 阅读 · 0 评论 -
【MATLAB代码】基于MCC(最大相关熵)的EKF,一维滤波,用于解决观测噪声的异常|附完整代码,订阅专栏后可直接查看
本文所述的代码实现了一种基于最大相关熵准则(Maximum Correntropy Criterion, MCC)的鲁棒性卡尔曼滤波算法(MCC-KF),重点解决传统卡尔曼滤波在观测噪声存在异常值时估计精度下降的问题。通过引入高斯核函数对残差进行加权处理,有效降低了异常观测值对状态估计的干扰。原创 2025-06-07 19:09:57 · 579 阅读 · 0 评论 -
MATLAB代码|遗传算法(GA)与粒子滤波(PF)结合|三维滤波|状态量和观测量都是三维的|附完整的MATLAB代码
本文介绍了一种结合遗传算法(GA)与粒子滤波(PF)的状态估计方法,通过MATLAB代码展示了其实现过程。该方法旨在解决传统粒子滤波中的粒子退化问题,并提升全局优化能力。代码核心包括参数初始化、粒子滤波流程、遗传算法重采样机制以及性能评估。遗传算法通过选择、交叉和变异操作改进重采样过程,增加粒子多样性,从而提升状态估计精度。运行结果显示,GA-PF方法能够有效跟踪三维状态量,并通过误差分析验证了其优越性。代码提供了完整的MATLAB实现,可直接运行并生成状态估计对比图和误差曲线。原创 2025-05-19 10:23:43 · 709 阅读 · 0 评论 -
基于 MATLAB 的粒子滤波算法实现示例,用于处理手机传感器数据并估计电梯运行参数。
通过调用智能手机内置传感器并结合粒子滤波算法,可以有效提高电梯运行参数的测量准确性。实验结果表明,该方法能够显著降低测量误差,为电梯运行监测提供了一种便捷、低成本的技术手段。如需帮助,或有导航、定位滤波相关的代码定制需求,请点击下方卡片联系作者。原创 2025-02-12 15:37:44 · 450 阅读 · 0 评论 -
【matlab创新性滤波代码】平方根扩展卡尔曼滤波(SR EKF)例程,三维非线性系统的滤波,提供完整代码
三维的非线性扩展卡尔曼滤波(EKF)改进而来的平方根卡尔曼滤波(SRKF),代码的数值稳定性得到了显著提升,特别适合高维系统或条件数较差的场景。本文给出完整例程,订阅专栏后可获得。原创 2025-02-08 10:42:23 · 328 阅读 · 0 评论 -
三维粒子滤波(Particle Filter)MATLAB例程,估计三维空间中匀速运动目标的位置(x, y, z),提供下载链接
本 MATLAB 代码实现了三维粒子滤波(Particle Filter)算法,旨在估计在三维空间中以匀速运动的目标的位置(x, y, z)。该程序生成真实运动轨迹及带噪声的观测数据,并使用粒子滤波技术进行状态估计,最终通过可视化展示真实轨迹、观测数据与估计结果。原创 2025-02-06 10:56:39 · 490 阅读 · 0 评论 -
维度可变的UKF(无迹卡尔曼滤波),附有完整源代码
初始化清空工作区和命令窗口,固定随机数种子以确保结果可重现。定义时间序列和状态维度(dim),可以灵活设置至任意值,以适应特定应用。设置过程和观测噪声的协方差矩阵,初始化状态向量和协方差矩阵,并分配观测值的存储空间。运动模型通过迭代生成真实状态、未滤波状态和观测值。真实状态保持线性更新,未滤波状态添加过程噪声,观测值为真实状态的平方加上观测噪声。无迹卡尔曼滤波(UKF)在循环中进行UKF的预测和更新步骤:计算sigma点和权重,以捕捉状态的分布特征。原创 2025-01-16 21:46:06 · 208 阅读 · 0 评论 -
EKF,自动匹配维度,完整的MATLAB代码
这段代码实现了一个扩展卡尔曼滤波的完整流程,包含了滤波模型的初始化、运动模型的模拟、EKF的预测与更新步骤、结果的绘图和误差的输出。通过这种方式,可以有效地对动态系统进行状态估计,验证EKF在处理非线性观测中的有效性。如需帮助,或有导航、定位滤波相关的代码定制需求,请点击下方卡片联系作者。原创 2025-01-17 10:31:31 · 258 阅读 · 0 评论 -
增广卡尔曼滤波AKF的要点分析
增广卡尔曼滤波(AKF)是一种适合于同时估计状态和额外参数的有效滤波器,特别是在处理非线性动态系统时。通过适当的线性化过程,AKF能够提供对动态系统的准确估计和跟踪。上述代码示例给出了AKF的基本实现,可以根据具体应用进行扩展和修改。如需帮助,或有导航、定位滤波相关的代码定制需求,请点击下方卡片联系作者。原创 2025-01-16 10:43:22 · 590 阅读 · 0 评论 -
EKF和KF的区别(不是有F和H的就是经典KF、有雅克比的就是EKF)
在信号处理和控制系统中,卡尔曼滤波(Kalman Filter, KF)是一种广泛应用的递归算法,用于估计动态系统的状态。扩展卡尔曼滤波(Extended Kalman Filter, EKF)则是对经典卡尔曼滤波的扩展,主要用于处理非线性系统的状态估计。尽管两者有相似的基本思想,但它们之间存在一些关键的区别。原创 2025-01-08 14:46:55 · 431 阅读 · 0 评论 -
CKF的效果比EKF更差的原因分析
在选择使用 CKF 还是 EKF 时,需要综合考虑系统的非线性程度、计算资源、实现复杂性和对实时性的要求。如果系统较为复杂且对精度有较高要求,CKF 可能更优;如果计算资源有限或系统相对简单,EKF 可能是更合适的选择。原创 2025-01-07 10:14:32 · 217 阅读 · 0 评论 -
结合长短期记忆网络(LSTM)和无迹卡尔曼滤波器(UKF)的技术在机器人导航和状态估计中的应用前景
结合长短期记忆网络(LSTM)和无迹卡尔曼滤波器(UKF)的技术在机器人导航和状态估计中具有广泛的应用前景。原创 2024-12-31 10:20:09 · 1760 阅读 · 0 评论 -
EKF 自动匹配维度 MATLAB代码
该MATLAB代码实现了扩展卡尔曼滤波(EKF)算法,用于对多维状态进行估计和滤波。代码由Evand编写,旨在处理具有过程噪声和观测噪声的动态系统。通过对比未滤波状态和EKF估计值,展示了滤波效果。原创 2024-12-27 18:48:44 · 297 阅读 · 0 评论 -
n维的线性卡尔曼滤波代码,MATLAB,从1维~100维可自动调节
一个适用于任意维度的线性卡尔曼滤波 MATLAB 代码示例。该代码支持从 1 维到 100 维的自动调节。原创 2024-12-26 14:29:55 · 362 阅读 · 0 评论 -
【开源 MATLAB卡尔曼滤波 极简代码】一维、线性的卡尔曼滤波,可用于温度滤波、湿度滤波等,附完整的代码
初始化部分清空工作区及命令行:使用clearclc和close all清理环境。随机数种子:通过rng(0)设置固定的随机数种子,以确保结果可重复。参数设置T:采样率,设置为1。t:构建时间序列,范围为1到100。Q和R:分别定义系统噪声和观测噪声的方差。P:初始状态协方差。这段代码展示了线性卡尔曼滤波在一维状态估计中的应用,适用于需要在噪声环境中进行可靠状态估计的场景。通过可视化结果,用户可以直观地观察到滤波的效果和性能。原创 2024-12-26 13:05:24 · 498 阅读 · 0 评论
分享