股票量化分析系统浅析之(五)训练集越多越好吗

本文通过对比两次实验发现,增大训练集规模并不总能提升测试集精度。即使训练集变大,若包含与测试集分布不同的样本,可能导致精度下降。这一现象提示我们在量化分析中选择数据集规模时需要谨慎处理数据分布的一致性。
摘要由CSDN通过智能技术生成

对于同一组测试集,使用两个不同的seed进行两次实验,这两次实验的训练集都更大,但是一次实验结果是测试集精度上升,另外一次实验结果是测试集精度下降。两组实验虽然训练集都更大,但是都不是对于小数据集的扩展,而是重新随机采样了更大的数据集。不过这两次实验的训练集是相同的。

这个现象很有意思。更大的训练集使得测试集精度上升比较好理解,但是为什么更大的训练集也会造成测试集精度下降呢?也许是因为更大的训练集包含了更多与测试集不同的分布。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AlphaFinance

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值