从三角级数到傅里叶级数

本文深入探讨傅里叶级数在信号处理中的应用,解释如何通过傅里叶级数将非正弦信号分解为不同频率的组件。从无穷级数、三角级数的基本概念出发,详细阐述了谐振公式的变换和叠加,最后介绍了傅里叶系数的计算方法,展示了如何利用傅里叶级数对周期函数进行无限逼近。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        在信号处理领域,傅里叶级数(Fourier series)用来模拟非正弦的方波,通过它对非正弦方波的分解,将原始信号分解成若干个不同周期和频率的型号,从而实现对信号频谱的分析。通过对原函数的傅里叶级数展开,实现对原函数的无限逼近。它在信号处理、物理学等很多领域都有着广泛的应用。傅里叶级数是具有傅里叶系数的三角级数,它得名于法国数学家约瑟夫·傅里叶,他提出任何函数都可以展开为三角级数。文章从无穷级数开始说起。

无穷级数

        三角级数是无穷级数的一种,在了解三角级数之前,先了解一下什么是无穷级数。它的定义是:一个具有“一般项”  的无穷级数有下面的形式:

a_1+a_2+\cdots=\sum_{\nu=1}^{\infty}a_{\nu}

  右边的带和符号是左边的一种缩写方式。当n增加时,第 n 个和

s_n=a_1+a_2+\cdots+a_n=\sum_{\nu=1}^{n}a_{\nu} 

趋向于一个极限

S=\lim_{n \to \infty}s_n 

我们称S为级数的和,并且这个级数是收敛的。否则我们说它是发散的。无穷级数研究的主要工作是分析它收敛性,判断它是否收敛于某个值或某个函数。一个级数收敛的必要条件是 

\lim_{n \to \infty}a_n=0 

常用的级数有幂级数,如: 

e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots=1+\sum_{n=1}^{\infty}\frac{x^n}{n!} 

写成极限形式是

\lim_{n \to \infty}(1+\frac{x}{n})^n 

或二项式级数 

\frac{1}{1+x}=(1+x)^{-1}=1-x+x^2-x^3+x^4-+\cdots=\sum_{\nu=0}^{\infty}(-1)^{\nu}x^{\nu} 

三角级数 

三角级数是形如

f(x)=\frac{a_0}{2}+\sum_{\nu=1}^{\infty}(a_{\nu}\cos\nu x + b_{\nu}\sin \nu x) 

        它是由无穷多个具有三角函数组成的项。傅里叶阐明了三角级数能表示一类广泛的“任意函数”。这类函数基本上包括了每一个特别重要的函数,不管是机械作图的方法从几何上定义的,还是用其他方法定义的,甚至具有跳跃间断的函数,或者不同区间上服从不同的形成规律的函数,都能用三角级数表示出来。通过\sin,\cos 函数很容易联想到常用的周期函数:简谐振动(谐振)。 

谐振 

我们知道谐振的一般表达式是

f(x)=A\sin (\omega x +\varphi) 

有时也可用 t (时间)表示x  ,其中A  :振幅(曲线的峰值);  \omega:振动的圆频率(角速度);   (\omega x +\varphi):相位

数学·统计学系列:三角级数论 作 者: (英)哈代 ,(英)罗戈辛斯基 著,徐瑞云 ,王斯雷 译 出版时间:2013 丛编项: 数学·统计学系列 内容简介   《数学·统计学系列:三角级数论》以现代的观点简明而完整地讲述傅里叶级数的基础理论,全书共分7章。第1章讲述预备性知识;第2,3章讲傅里叶级数的性质;第4章讲傅里叶级数的收敛性及其判别法;第5章、第6章讲傅里叶级数的求和法及其应用;最后一章讲一般的三角级数。另有一个附录。对全书主要内容的来源作了一个综述。 目录 第1章 通论 1.1 三角级数 1.2 三角级数与调和函数 1.3 Fourier三角级数 1.4 测度和积分 1.5 1p类 1.6 1p空间及其度量 1.7 1p中的收敛 (强收敛) 1.8 两个周期函数的折合 1.9 12中的直交系 1.1 0直交系的例子 1.1 1一些进一步的知识 第2章 Hi1bert空间中的Fourier级数 2.1 L2中一般的Fourier级数 2.2 Riesz-Fischer定理 2.3 完备系和Parseva1定理 2.4 Mercer定理 2.5 封闭性和完备性 2.6 三角函数系的完备性 2.7 三角级数的Parseval定理和Riesz-Fischer定理 2.8 关于其他函数系的一些定理 2.9 Weierstrass定理 第3章 Fourier三角级数的其他性质 3.1 Fourier常数的简单性质 3.2 Riemann-1ebesgue定理 3.3 几个简单不等式 3.4 Fourier常数的数量级 3.5 有界变差函数 3.6 几个基本公式 3.7 一个特殊的三角级数 3.8 Fourier级数的积分 3.9 一个基本的收敛定理 3.1 0具有递降系数的级数 3.1 1 具有递降系数的级数 (续) 3.1 2 Gibbs现象 第4章 Fourier级数的收敛性 4.1 引言 4.2 Fourier级数的收敛问题 4.3 在一点的连续条件 4.4 Dini判别法 4.5 有界变差函数:Jordan判别法 4.6 1ebesgue判别法 4.7 一致收敛的其他判别法 4.8 共轭级数 4.9 共轭级数的收敛问题 4.1 0共轭级数的收敛判别法 4.1 1 sn (瑁┖蛃n (瑁┑氖?考叮 4.1 2在连续点的发散性 4.1 3就范直交系的1ebesgue函数 4.1 4三角函数系 (T)的1ebesgue常数 第5章 Fourier级数的求和 5.1 引言 5.2 线性的正则求和法 5.3 (C,1)求和法以及A-求和法 5.4 K-求和法及其核 5.5 Fourier级数在连续点或跳跃点的求和 5.6 几乎处处可求和 5.7 Fourier级数的 (C,1)求和 5.8 共轭级数的 (C,1)求和 5.9 A求和 5.1 0共轭级数的A求和 5.1 1定理70至定理76的一些应用 5.1 2 Fourier级数的导级数 第6章 第5章 定理的应用 6.1 引言 6.2 一个几乎处处发散的Fourier级数 6.3 具有正系数的Fourier级数 6.4 Ko1mogoroff的另一定理 6.5 Fourier级数的强性求和 6.6 其他求和法 6.7 应用 6.8 共轭函数的存在性 6.9 Fourier级数的收敛因子 6.10 Kuttner定理 第7章 一般三角级数 7.1 通论 7.2 收敛的三角级数的系数 7.3 Riemann求和法 7.4 连续函数的广义二阶导数 7:5关于凸函数的一个定理 7.6 Cantor定理和du Bois-Reymond定理 7.7 无界函数,dela Vallé;e-Poussin定理 7.8 更一般的情形 附录 编辑手记
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

趣宽科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值