在信号处理领域,傅里叶级数(Fourier series)用来模拟非正弦的方波,通过它对非正弦方波的分解,将原始信号分解成若干个不同周期和频率的型号,从而实现对信号频谱的分析。通过对原函数的傅里叶级数展开,实现对原函数的无限逼近。它在信号处理、物理学等很多领域都有着广泛的应用。傅里叶级数是具有傅里叶系数的三角级数,它得名于法国数学家约瑟夫·傅里叶,他提出任何函数都可以展开为三角级数。文章从无穷级数开始说起。
无穷级数
三角级数是无穷级数的一种,在了解三角级数之前,先了解一下什么是无穷级数。它的定义是:一个具有“一般项” 的无穷级数有下面的形式:
右边的带和符号是左边的一种缩写方式。当增加时,第
个和
趋向于一个极限
我们称为级数的和,并且这个级数是收敛的。否则我们说它是发散的。无穷级数研究的主要工作是分析它收敛性,判断它是否收敛于某个值或某个函数。一个级数收敛的必要条件是
常用的级数有幂级数,如:
写成极限形式是
或二项式级数
三角级数
三角级数是形如
它是由无穷多个具有三角函数组成的项。傅里叶阐明了三角级数能表示一类广泛的“任意函数”。这类函数基本上包括了每一个特别重要的函数,不管是机械作图的方法从几何上定义的,还是用其他方法定义的,甚至具有跳跃间断的函数,或者不同区间上服从不同的形成规律的函数,都能用三角级数表示出来。通过 函数很容易联想到常用的周期函数:简谐振动(谐振)。
谐振
我们知道谐振的一般表达式是
有时也可用 (时间)表示
,其中
:振幅(曲线的峰值);
:振动的圆频率(角速度);
:相位