傅里叶级数在三角插值多项式中的应用(含例题)

本文探讨了傅里叶级数在三角插值多项式中的应用,通过实例展示了如何使用傅里叶变换确定特定函数的16次三角插值多项式,并验证了其在[-π,π]区间上的逼近效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

傅里叶级数在三角插值多项式中的应用

理论部分
用正弦和余弦函数表示任意函数始于18世纪50年代。下面介绍最佳平方三角逼近多项式和傅立叶级数。 在这里插入图片描述
周期信号三角函数分解
周期信号
例题部分
使用傅里叶变换确定函数f(x)=x^2*cos(x)在[-pi,pi]上的16次三角插值多项式。
(1)编写子程序fseries.m,求傅里叶系数及级数。程序如下:
% 功能:求解函数的傅里叶系数及傅里叶级数。 %an,bn为傅里叶系数,f为傅里叶多项式;
%fx为函数,x为自变量,n为三角多项式的次数,a,b为函数fx的定义域

function [an,bn,f]=fseries(fx,x,n,a,b)
if nargin==3
a=-pi;
b=pi;
end
l=(b-a)/2;
if a+b
fx=subs(fx
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值