Polya

Polya


拉格朗日定理

H是G的子群
|H||G:H|=|G| ( |G:H| 表示H在G中的陪集个数)
|H| 的每个陪集的大小与 |H| 相等,又由不同的陪集互不相交且不同陪集的并为 G 得证
很显然这也说明了一个群的子群大小是整除该群大小的


轨道与稳定化子定理

对于一个被置换集合内的元素x
我们定义他的轨道为
Orbit(x)={n|n=f(x),fG}
即他最后通过置换集合的作用后能变成的不同元素集合.
我们定义他的稳定化子为
Stab(x)={f|x=f(x),fG} 的置换组成的集合

首先证明一个东西
HG
aH H 关于a的陪集,
bH H 关于b的陪集,
那么 aH=bH <-> a1bH
直接先证明 aH=bH -> a1bH ,反过来的话同理
我们有 ah1=bh2 ,那么 ab1=h2h11 ,因为 h2h11H (群的定义),得证。

|轨道||稳定化子|=|群|
证明
g1x 等于 g2x 当且仅当 g11g2x=x
也就是 g11g2 (g1的逆乘以g2)在x的稳定化子里
也就是说 g1 g2 对应的稳定化子的陪集相同
轨道的大小就是不同的 g1x 的个数,即稳定化子的陪集数量
根据拉格朗日定理,得证.


Polya定理

一个显然的东西:
xM,xOrbit(x)

|M/G|=1|G|gG|Mg|
其中 Mg={g(m)=mmM} 即在g的作用下不动的元素

证明
1|G|gG|Mg|=1|G|mM|Stab(M)|=mM1|Orbit(M)|
这个式子很明显就是 |M/G|

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值